Nadia Ezzat Al-kirbasee¹, Ahlam Hussein Hassan²✉¹
, and Hussein Ali Ahmad³¹
¹Department of Chemistry, College of Education for Women, University of Kufa, Iraq
²Department of Chemistry, College of Science, University of Kufa, Iraq
³Department of Chemistry, College of Pure Science, University of Kerbala, Iraq
Received: Oct 2, 2023/ Revised: Oct 30, 2023/Accepted: Oct 31, 2023
(✉) Corresponding Author: Ahlam Hussein Hassan
Abstract
Theoretical investigations were conducted to explore the nature of interactions between ruthenium (Ru) atoms and chlorine (Cl) ligands in the di-bridged diruthenium carbonyl cluster [Cp‡Ru(μ-Cl)]2, employing the Quantum Theory of Atoms-in-Molecules (QTAIM) approach. The study involved an analysis of the topological properties of electron density within both the metal–metal and metal–ligand bonds, along with the computation of bond delocalization indices δ(A, B). These findings were then compared with data from prior research on organometallic systems. Notably, the presence of bridging chlorine atoms was found to influence the electron density distribution in Ru–Ru interactions. Interestingly, no direct bonding, as indicated by the absence of bond critical points or bond paths, was observed between the transition metal atoms. It was proposed that a multicenter 4c–4e interaction exists within the bridged regions, Ru2Cl2, of the cluster. Moreover, the Ru-Cl bonds within the cluster exhibited small positive values for electron density ρ(b), small positive values for Laplacian ∇2ρ(b), and small negative values for total energy density H(b), all characteristic of an open-shell interaction.
Keywords: AIM approach, Bonding analysis for the dinuclear cluster, DFT calculation, Topological properties, and Di-Ruthenium Di-Chloro Cluster.
References
Adamo, C., & Barone, V. (1999). Toward reliable density functional methods without adjustable parameters: The PBE0 model. Journal of Chemical Physics, 110(13), 6158–6170.
https://doi.org/10.1063/1.478522
Aray, Y., Rodriguez, J., & Vega, D. (2000). Topology of the Electron Density and Cohesive Energy of the Face-Centered Cubic Transition Metals. Journal of Physical Chemistry B, 104(19), 4608–4612.
https://doi.org/10.1021/jp993976a
Bader, R.F.W. (1998). A Bond Path: A Universal Indicator of Bonded Interactions. Journal of Physical Chemistry A, 102, 7314–7323.
https://doi.org/10.1021/jp981794v
Biegler‐König, F., & Schönbohm, J. (2002). Update of the AIM2000‐Program for atoms in molecules. Journal of Computational Chemistry, 23(15), 1489–1494.
https://doi.org/10.1002/jcc.10085
Bader, Richard F. W. (2002). Atoms in Molecules. In Encyclopedia of Computational Chemistry (pp. 9–15).
https://doi.org/10.1002/0470845015.caa012
Bader, Richard F.W. (2009). Bond paths are not chemical bonds. Journal of Physical Chemistry A, 113(38), 10391–10396.
https://doi.org/10.1021/jp906341r
Biegler‐könig, F. W., Bader, R. F. W., & Tang, T. ‐H. (1982). Calculation of the average properties of atoms in molecules. II. Journal of Computational Chemistry, 3(3), 317–328.
https://doi.org/10.1002/jcc.540030306
Bo, C., Sarasa, J. P., & Poblet, J. M. (1993, June). Laplacian of charge density for binuclear complexes: terminal vs bridging carbonyls. The Journal of Physical Chemistry, 97(24), 6362–6366.
https://doi.org/10.1021/j100126a009
Cabeza, J. A., Van Der Maelen, J. F., & Garcia-Granda, S. (2009). Topological analysis of the electron density in the N-heterocyclic carbene triruthenium cluster [Ru3(μ-H)2(μ3- MeImCH)(CO)9] (Me2im = l,3-dimethylimidazol-2-ylidene). Organometallics, 28(13), 3666–3672.
https://doi.org/10.1021/om9000617
Coppens, P., Abramov, Y., Carducci, M., Korjov, B., Novozhilova, I., Alhambra, C., & Pressprich, M. R. (1999). Experimental Charge Densities and Intermolecular Interactions: Electrostatic and Topological Analysis of dl-Histidine. Journal of the American Chemical Society, 121(11), 2585–2593.
https://doi.org/10.1021/ja983320f
Cremer, D., & Kraka, E. (1984). Chemical Bonds without Bonding Electron Density — Does the Difference Electron‐Density Analysis Suffice for a Description of the Chemical Bond? Angewandte Chemie International Edition in English, 23(8), 627–628.
https://doi.org/10.1002/anie.198406271
Fuentealba, P., Preuss, H., Stoll, H., & Von Szentpály, L. (1982). A proper account of core-polarization with pseudopotentials: single valence-electron alkali compounds. Chemical Physics Letters, 89(5), 418–422.
https://doi.org/10.1016/0009-2614(82)80012-2
Gatti, C. (2005). Chemical bonding in crystals: new directions. Zeitschrift Für Kristallographie – Crystalline Materials, 220(5–6), 399–457.
https://doi.org/10.1524/zkri.220.5.399.65073
Grimme, S. (1996). Theoretical bond and strain energies of molecules derived from properties of the charge density at bond critical points. Journal of the American Chemical Society, 118(6), 1529–1534.
https://doi.org/10.1021/ja9532751
Hehre, W. J., Ditchfield, K., & Pople, J. A. (1972). Self-consistent molecular orbital methods. XII. Further extensions of gaussian-type basis sets for use in molecular orbital studies of organic molecules. The Journal of Chemical Physics, 56(5), 2257–2261.
https://doi.org/10.1063/1.1677527
Jabłoński, M., & Palusiak, M. (2010). Basis set and method dependence in quantum theory of atoms in molecules calculations for covalent bonds. Journal of Physical Chemistry A, 114(47), 12498–12505.
https://doi.org/10.1021/jp106740e
Kumar, P. S. V., Raghavendra, V., & Subramanian, V. (2016). Bader’s Theory of Atoms in Molecules (AIM) and its Applications to Chemical Bonding. Journal of Chemical Sciences, 128(10), 1527–1536.
https://doi.org/10.1007/s12039-016-1172-3
Macchi, P., & Sironi, A. (2003). Chemical bonding in transition metal carbonyl clusters: Complementary analysis of theoretical and experimental electron densities. In Coordination Chemistry Reviews (Vols. 238–239, pp. 383–412). Elsevier.
https://doi.org/10.1016/S0010-8545(02)00252-7
Maelen, J. F. Van Der, García-granda, S., & Cabeza, J. A. (2011). Theoretical topological analysis of the electron density in a series of triosmium carbonyl clusters: [Os3(CO)12], [Os3(μ-H)2(CO)10], [Os3(μ-H)(μ-OH)(CO)10] and [Os3(μ-H)(μ-Cl)(CO)10]. Computational and Theoretical Chemistry, 968(1–3), 55–63.
https://doi.org/10.1016/j.comptc.2011.05.003
Mosapour Kotena, Z., Behjatmanesh-Ardakani, R., & Hashim, R. (2014). AIM and NBO analyses on hydrogen bonds formation in sugar-based surfactants (α/β-d-mannose and n-octyl-α/β-d-mannopyranoside): a density functional theory study. Liquid Crystals, 41(6), 784–792.
https://doi.org/10.1080/02678292.2014.886731
Nakanishi, W., Hayashi, S., & Narahara, K. (2008). Atoms-in-molecules dual parameter analysis of weak to strong interactions: Behaviors of electronic energy densities versus Laplacian of electron densities at bond critical points. Journal of Physical Chemistry A, 112(51), 13593–13599.
https://doi.org/10.1021/jp8054763
Niskanen, M., Hirva, P., & Haukka, M. (2009). Computational DFT Study of Ruthenium Tetracarbonyl Polymer. Journal of Chemical Theory and Computation, 5(4), 1084–1090.
https://doi.org/10.1021/ct800407h
Racioppi, S., Della Pergola, R., Colombo, V., Sironi, A., & Macchi, P. (2018). Electron Density Analysis of Metal Clusters with Semi-Interstitial Main Group Atoms. Chemical Bonding in [Co6X(CO)16]- Species. Journal of Physical Chemistry A, 122(22), 5004–5015.
https://doi.org/10.1021/acs.jpca.8b02690
Rozas, I., Alkorta, I., & Elguero, J. (2000). Behavior of ylides containing N, O, and C atoms as hydrogen bond acceptors. Journal of the American Chemical Society, 122(45), 11154–11161.
https://doi.org/10.1021/ja0017864
Sakai, Y., Miyoshi, E., Klobukowski, M., & Huzinaga, S. (1997). Model potentials for main group elements Li through Rn. Journal of Chemical Physics, 106(19), 8084–8092.
https://doi.org/10.1063/1.473816
Shimogawa, R., Takao, T., & Suzuki, H. (2013). Synthesis, Characterization, and Reactions of Ruthenium(II), -(III), and -(IV) Complexes with Sterically Demanding 1,2,4-Tri-tert-butylcyclopentadienyl Ligands. Organometallics, 33(1), 289–301.
https://doi.org/10.1021/om401035y
Van der Maelen, J. F., Brugos, J., García-Álvarez, P., & Cabeza, J. A. (2020). Two octahedral σ-borane metal (MnI and RuII) complexes containing a tripod κ3N,H,H-ligand: Synthesis, structural characterization, and theoretical topological study of the charge density. Journal of Molecular Structure, 1201, 127217.
https://doi.org/10.1016/j.molstruc.2019.127217
Van der Maelen, J. F., & Cabeza, J. A. (2012). QTAIM Analysis of the Bonding in Mo–Mo Bonded Dimolybdenum Complexes. Inorganic Chemistry, 51(13), 7384–7391.
https://doi.org/10.1021/ic300845g
How to cite this article
Al-kirbasee, N. E., Hassan, A. H. and Al-Ibadi, M. A. M. (2023). Quantum Theory of Atoms-in-Molecules (QTAIM) Study of the Bonding in Di-Ruthenium Di-Chloro Cluster. Chemical and Environmental Science Archives, Vol. 3(4), 65-69.
https://doi.org/10.47587/CESA.2023.3401
Licence Article Metadata
This work is licensed under a Creative Commons Attribution 4.0 International License.