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Abstract 

Theoretical investigations were conducted to explore the nature of interactions between ruthenium (Ru) atoms and chlorine (Cl) 

ligands in the di-bridged diruthenium carbonyl cluster [Cp‡Ru(μ-Cl)]2, employing the Quantum Theory of Atoms-in-Molecules 

(QTAIM) approach. The study involved an analysis of the topological properties of electron density within both the metal–metal 

and metal–ligand bonds, along with the computation of bond delocalization indices δ(A, B). These findings were then compared 

with data from prior research on organometallic systems. Notably, the presence of bridging chlorine atoms was found to influence 

the electron density distribution in Ru–Ru interactions. Interestingly, no direct bonding, as indicated by the absence of bond 

critical points or bond paths, was observed between the transition metal atoms. It was proposed that a multicenter 4c–4e 

interaction exists within the bridged regions, Ru2Cl2, of the cluster. Moreover, the Ru-Cl bonds within the cluster exhibited small 

positive values for electron density ρ(b), small positive values for Laplacian ∇2ρ(b), and small negative values for total energy 

density H(b), all characteristic of an open-shell interaction. 

 

Keywords:  AIM approach, Bonding analysis for the dinuclear cluster, DFT calculation, Topological properties, and Di-
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Introduction 

 

In modern quantum chemistry, the atoms-in-molecules (AIM) 

theory (Bader, 1990a; Kumar et al., 2016), is a good and 

complementary tool to characterize the nature of chemical 

bonds and predict the properties of the molecular structure 

(Nakanishi et al., 2008; Gatti, 2005). Useful parameters, such 

as electronic density (ρb), Laplacian (∇2ρb) and the ellipticity, 

ε, which are computed at bond critical points are used to 

concept structure and interaction in organometallic 

compounds through valence bonds(VS) and non-valence 

interactions (Van Der Maelen & Cabeza, 2012; Niskanen et 

al., 2009; Maelen et al., 2011). The aim of this paper is thus to 

explore the nature of their bonding and analysis the electron 

density distributions via topological parameters associated 

with Ru-Ru, Ru-Cl bonds in di nuclear clusters:- [Cp‡Ru(μ-

Cl)]2 (Shimogawa et al., 2013). 

 

 

 

Computational Methods 

 

The X-ray diffraction data of the systems under study were 

used as starting points to calculate the optimized geometries. 

These systems were optimized at the PBE1PBE (Adamo & 

Barone, 1999). level theory in conjunction with the SDD 

(Fuentealba et al., 1982) basis set for Ru atoms and the 6-31G 

(d,p) (Hehre et al., 1972) basis set for remaining atoms using 

the Gaussian 09 program packages(Gaussian, 2009). The 

geometry of the complex is confirmed to be a local minimum 

by the absence of imaginary vibrational frequencies. QTAIM 

approach has been performed with the AIM2000 program 

packages (Bader et al., 2002). The large all-electron “well-

tempered basis set” WTBS (Sakai et al., 1997) was used for 

the Ru atoms while the 6-31G (d,P) basis set was used for Cl, 

O, C and H atoms. 
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Results and Discussion 

 

Topological Properties of the Electron Density  

 

The QTAIM method, employed using the AIM2000 program, 

plays a pivotal role in elucidating molecular and nanocluster 

structures and their bonding characteristics. One of its central 

features is the determination of the metal-metal bond critical 

point (BCP) through calculations (Jabłoński & Palusiak, 2010; 

Mosapour Kotena et al., 2014). These critical points carry 

crucial information regarding the nature of bonding, 

distinguishing between open and closed-shell interactions. A 

specific class of critical points, known as bond critical points 

(BCPs) and labeled as (3,-1), is indicative of the presence of 

bonding (Grimme, 1996; Bader, 1998). BCPs are 

characterized by a decrease in electron density along two 

directions and concentration in the third direction. Conversely, 

ring critical points (RCPs), labeled as (3,+1), are characterized 

by a decrease in electron density in one direction and an 

increase in two directions. Some structures exhibit cage 

critical points (CCPs), labeled as (3,+3), which lead to an 

increase in charge density in all three directions. In the context 

of chemical bonding within a compound, a bond is 

characterized by a bond path that connects two nuclei while 

passing through their respective bond critical point 

(Biegler‐könig et al., 1982; Aray et al., 2000; Richard, 2009). 

The chemical structure of the system can be represented as a 

topological graph generated from the network of bond paths 

and the maxima of charge densities (Gatti, 2005; Richard, 

2002). In the cluster graph (Fig. 1), various critical points, 

including bond critical points and ring critical points, are 

connected by bond paths, illustrating the bonding between 

nuclei. Of particular significance is the absence of direct 

bonding between the transition metal nuclei in the cluster. 

Notably, no bond critical point or bond path was found 

between these transition metal atoms. Additionally, several 

ring critical points were identified. 

 

 
 

Fig. 1 Molecular graphs of complex, illustrating the 

presence bond paths (solid line) and bond and ring critical 

points with red and yellow dots, respectively. 

 

Fig. 2 a gradient trajectory map in chosen core plane of all 

clusters is shown, where all BPs and BCPs with the atomic 

basins in the selected planes are clearly seen. Furthermore, for 

cluster, the electron density allocation is very similar around 

Ru atoms, but no BPs and BCPs between in most Ru- Ru 

metallic atom which bonding to Cl bridge. The bps and bcps 

found between Ru-Cl are also shown. 

 
 

Fig. 2 Gradient trajectories map on a total electron density plot though the core plane of clusters. The atomic basins, bp’s 

and bcp’s are also shown. 

 

M-M interactions in cluster 

 

The quantum theory of atoms in molecules is a very popular 

tool for evaluation properties of atoms and nature of the 

chemical bonding (Coppens et al., 1999). Based on AIM 

theory (Bader, 1990a), the characterization and understanding 

of topology of the electron density ρb , the Laplacian of 

electron density ∇2ρb, and the total energy density Hb at the 

bond critical point (BCP) are useful tools for the concept of 

chemical bonds (Bader, 1990b; Cremer & Kraka, 1984). 

The large values of electron density and negative values of the 

Laplacian and the total energy density are denoted as the open 

shell or shared (covalent) interactions. On the other hand, 

small values of electron density, positive values of Laplacian 
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and total energy density the interactions are closed shells. An 

additional total energy density Hb(r) is defined as  

 

Hb(r) = Gb(r) + Vb(r), 

where Gb(r) and Vb(r) indicate, respectively, the kinetic and 

potential energy density, and have been identified as a more 

appropriate index than Laplacian to characterize an interaction 

(Rozas et al., 2000). 

 

In Table 1, The results of the above-mentioned topological 

properties for the selected bonds of the cluster are included. 

 

 

Table 1. Selected topological parameters at the bond critical points for the cluster 1-4. ρb: electron density, ∇2ρb: 

Laplacian of the electron density, Gb: kinetic energy density ratio, Vb: potential energy density ratio, Hb: total energy 

density ratio, εb: ellipticity 

 

Bond ρb(eÅ-3) ∇2ρb (eÅ-5) Gb (he-1) Hb (he-1) Vb (he-1) εb 

Ru(1)-Cl(1) 0.054 0.236 0.063 -0.003 -0.066 0.644 

Ru(1)-Cl(2) 0.053 0.232 0.061 -0.003 -0.064 0.6707 

Ru(2)-Cl(1) 0.054 0.232 0.061 -0.003 -0.064 0.670 

Ru(2)-Cl(2) 0.054 0236 0.063 -0.003 -0.066 0.644 

Ru-C (ave) 0.297 0.668 0.1144 -0.2816 -0.3956 0.216 

 

An intriguing observation, as previously mentioned, is the 

complete absence of any bond critical points (BCPs) of type 

(3,–1) between the Ru atoms at the core, which are 

interconnected by Cl groups. This discovery underscores the 

complete lack of localized electron density between the Ru 

atoms, compelling us to assert that there is no direct chemical 

bonding between any pair of Ru atoms at the core (Bader, 

1998). The robust bridging interaction provided by the Cl 

groups disrupts the topological Ru-Ru connectivity. However, 

bond critical points with their associated bond paths have been 

identified in interactions involving both supported and 

unsupported metal-metal atoms (Racioppi et al., 2018). 

Regarding the Ru-Cl bonds, the topological properties were 

computed and are presented in Table 1. The calculated 

electron density values are notably higher than zero (0.054 

eÅ−3), the Laplacian values are positive (0.236 eÅ−5), and the 

H(b) values exhibit negativity (-0.003 he−1). Based on this data 

and in line with arguments in the literature, Ru-Cl interactions 

are categorized as open-shell interactions (Macchi & Sironi, 

2003). Additionally, the computed AIM ellipticities for Ru-Cl 

bonds are greater than zero, suggesting that these interactions 

tend to be approximately linear in nature. 

 

The plot of Laplacian map for the cluster core shows the 

polarization of the VSCCs of bridging chloro toward the 

midpoint of Ru-Ru interactions (Fig. 3) and the valence shell 

charge concentration (VSCC) the carbonyl C atoms toward the 

Ru atoms. 

 
Fig. 3 Laplacian distribution ∇2ρ(b) plot of the di-bridged diruthenium carbonyl cluster 

 

The delocalization index, denoted as d(A, B) (Van der Maelen 

et al., 2020), serves as a quantification of the shared electrons 

between two atoms. It is a pertinent AIM indicator used to 

characterize chemical bonding between atoms, and notably, it 

doesn't rely on the presence of a bond critical point. In Table 

2, you can find the computed values of the delocalization 

index δ(A–B) for the Ru cluster. The magnitude of d(Ru, Ru) 

falls within the range of 0.113, closely resembling values 

previously computed by the Cabeza group (Maelen et al., 

2011). Furthermore, these computed data are akin to, or even 

exceed, values calculated for various bridged M–M 

interactions (Macchi & Sironi, 2003; Cabeza et al., 2009; Bo 

et al., 1993). To summarize the data, which involves the 

summation of delocalization index values for the nonbonding 
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Ru-Ru interactions and the four Ru-Cl bonding interactions, it 

can be concluded that the total δ(A–B) for the core amounts to 

2.069 electron pairs within the Ru2Cl2 core. Consequently, the 

interaction within this core can be described as a 4c–4e 

interaction.

 

Table 2. The delocalization indices for specific atomic δ(A, B) interactions 

 
atom pairs 

(A, B) 

Ru(1) -Ru(2) Ru(1)-Cl(1) Ru(1)-Cl(2) Ru(2)-Cl(1) Ru(2)-Cl(2) 

δ(A, B) 0.1134 0.486 0.492 0.486 0.492 

 

Conclusion 

 

In summary, the application of Quantum Theory of Atoms in 

Molecules (QTAIM) to analyze ([Cp‡Ru(μ-Cl)]2 cluster has 

provided valuable insights into the electron density topological 

parameters and bonding characteristics within this cluster. A 

particularly noteworthy finding is the identification of a bond 

critical point and its associated bond path within the Ru−H 

bond in the core part Ru2Cl2. Interestingly, while no bond 

critical points or bond paths were detected between any pair of 

Ru metal atoms, a significant delocalization index was 

computed. This complex bonding situation in the Ru2Cl2 core 

can be aptly described as a series of multiple 4c–4e 

interactions within the cluster. Additionally, the topological 

properties determined for the Ru-Cl bonds strongly indicate 

that all these bonds exhibit characteristics typical of open-shell 

interactions. 
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