Aabid Ahmad1, Mohd Nayeem Ali1*, Mukul1 and Sunil Kumar Shroti2
1Department of Agriculture, Shri Ram College, Muzaffarnagar, U.P., India
2Department of Agriculture, R.K. (PG) College Shamli, U.P., India
Abstract
The present study is an attempt to review the global agro forestry system. Agro forestry has enormous potential to prevent climate change, safeguard people and livelihoods, and lay the groundwork for more sustainable economic and social growth. Agro forestry continues to play an important role in illuminating the agricultural sector’s competitive position. The primary problem for improving output in agro forestry systems is rational resource utilization by maximizing positive interactions and reducing negative ones. Climate change, which is produced by global warming, is a phenomena induced in part by an excess of carbon dioxide in the atmosphere. Adaptation strategies that encourage sustainable management and community-based practices have the potential not only to protect land and people from some of the negative effects of rising global temperatures, but also to provide opportunities for greater, more sustainable rural development and poverty reduction. The dominance of many traditional agro forestry systems in India provides an opportunity worth examining for carbon sequestration, improved livelihoods, biodiversity protection, soil fertility improvements, and rural employment.
Keywords: livelihoods, climate change, sustainable management, Agro forestry
References
Albrecht, A., & Kandji, S. T. (2003). Carbon sequestration in tropical agroforestry systems. Agriculture, Ecosystems & Environment, 99(1–3), 15–27.
https://doi.org/10.1016/s0167-8809(03)00138-5
Benefits of Agro Forestry Land Use in Nsukka Local Government Area, Enugu State, Nigeria. (2018). American International Journal of Agricultural Studies, 1–15.
https://doi.org/10.46545/aijas.v1i1.1
Brenner, L. A., Koehler, D. J., Liberman, V., & Tversky, A. (1996). Overconfidence in Probability and Frequency Judgments: A Critical Examination. Organizational Behavior and Human Decision Processes, 65(3), 212–219.
https://doi.org/10.1006/obhd.1996.0021
Brown, S., Hall, C. A. S., Knabe, W., Raich, J., Trexler, M. C., & Woomer, P. (1993). Tropical forests: Their past, present, and potential future role in the terrestrial carbon budget. Water, Air, & Soil Pollution, 70(1–4), 71–94. https://doi.org/10.1007/bf01104989
Caldwell, M. M., Dawson, T. E., & Richards, J. H. (1998). Hydraulic lift: consequences of water efflux from the roots of plants. Oecologia, 113(2), 151–161.
https://doi.org/10.1007/s004420050363
Dawson, T. E. (1993). Hydraulic lift and water use by plants: implications for water balance, performance and plant-plant interactions. Oecologia, 95(4), 565–574.
https://doi.org/10.1007/bf00317442
DHYANI, S. K., RAM, A., & DEV, I. (2016). Potential of agroforestry systems in carbon sequestration in India. The Indian Journal of Agricultural Sciences, 86(9).
https://doi.org/10.56093/ijas.v86i9.61348
Dhyani, S., Ajit, Handa, A., Jabeen, N., & Uma. (2011). Agroforestry: An Integrated system for conservation of natural resources in Northern India. Indian Journal of Forestry, 34(2), 121–130. https://doi.org/10.54207/bsmps1000-2011-949428
Dixon, R. K. (1995). Agroforestry systems: sources of sinks of greenhouse gases? Agroforestry Systems, 31(2), 99–116. https://doi.org/10.1007/bf00711719
Dixon, R. K., Solomon, A. M., Brown, S., Houghton, R. A., Trexier, M. C., & Wisniewski, J. (1994). Carbon Pools and Flux of Global Forest Ecosystems. Science, 263(5144), 185–190. https://doi.org/10.1126/science.263.5144.185
FAO. 2010. Breeding strategies for sustainable management of animal genetic resources. FAO Animal Production and Health Guidelines. No. 3. Rome, pp 155. ISBN 978-92-5-106391-0. Available at: http://www.fao.org/docrep/012/i1103e/i1103e00.htm (English version); http://www.fao.org/docrep/012/i1103s/i1103s.pdf (Spanish version). (2010). Animal Genetic Resources/Ressources Génétiques Animales/Recursos Genéticos Animales, 47, 138–139. https://doi.org/10.1017/s2078633610001086
García-Barrios, L., & Ong, C. (2004). Ecological interactions, management lessons and design tools in tropical agroforestry systems. Agroforestry Systems, 61–62(1–3), 221–236. https://doi.org/10.1023/b:agfo.0000029001.81701.f0
Hairiah, K., Sulistyani, H., Suprayogo, D., Widianto, Purnomosidhi, P., Widodo, R. H., & Van Noordwijk, M. (2006). Litter layer residence time in forest and coffee agroforestry systems in Sumberjaya, West Lampung. Forest Ecology and Management, 224(1–2), 45–57. https://doi.org/10.1016/j.foreco.2005.12.007
Hardesty, L. H. (1990). International symposium on planning for agroforestry. Land Use Policy, 7(1), 87–89.
https://doi.org/10.1016/0264-8377(90)90059-8
Hawkins, H. J., Hettasch, H., West, A. G., & Cramer, M. D. (2009). Hydraulic redistribution by Protea “Sylvia” (Proteaceae) facilitates soil water replenishment and water acquisition by an understorey grass and shrub. Functional Plant Biology, 36(8), 752.
https://doi.org/10.1071/fp09046
Horton, J. L., & Hart, S. C. (1998). Hydraulic lift: a potentially important ecosystem process. Trends in Ecology & Evolution, 13(6), 232–235. https://doi.org/10.1016/s0169-5347(98)01328-7
K.A. SINGH, & ARVIND K. RAI. (2001). Studies on biomass production, partitioning and allometry of different bamboo (Bamboo spp.) plant species grown in bamboosetum in Arunachal Pradesh. Indian Journal of Agronomy, 57(3), 284–290.
https://doi.org/10.59797/ija.v57i3.4634
Karlik, J. F., & Chojnacky, D. C. (2014). Biomass and carbon data from blue oaks in a California oak savanna. Biomass and Bioenergy, 62, 228–232. https://doi.org/10.1016/j.biombioe.2013.11.018
KUMAR, A., SINHA, A. K., & SINGH, D. (2003). STUDIES OFEUCALYPTUSPLANTATIONS UNDER THE FARM FORESTRY AND AGROFORESTRY SYSTEMS OF U.P. IN NORTHERN INDIA. Forests, Trees and Livelihoods, 13(4), 313–330. https://doi.org/10.1080/14728028.2003.9752468
Lal, R. (2005). Forest soils and carbon sequestration. Forest Ecology and Management, 220(1–3), 242–258. https://doi.org/10.1016/j.foreco.2005.08.015
Ong, C., Corlett, J., Singh, R., & Black, C. (1991). Above and below ground interactions in agroforestry systems. Forest Ecology and Management, 45(1–4), 45–57.
https://doi.org/10.1016/0378-1127(91)90205-a
Ong, C., Corlett, J., Singh, R., & Black, C. (1991). Above and below ground interactions in agroforestry systems. Forest Ecology and Management, 45(1–4), 45–57.
https://doi.org/10.1016/0378-1127(91)90205-a
P, K., NJ, B., S, S., S, C., A, R., & SK, B. (2023). Multivariate Statistical Analysis for Water Quality Variation in Baraila Lake, Bihar, India. Austin Environmental Sciences, 8(1). https://doi.org/10.26420/austinenvironsci.2023.1090
Pandey, D. (2002). Carbon sequestration in agroforestry systems. Climate Policy, 2(4), 367–377.
https://doi.org/10.1016/s1469-3062(02)00025-6
Patel, L. B., Sidhu, B. S., & Beri, V. (1996). Symbiotic efficiency of Sesbania rostrata and S. cannabina as affected by agronomic practices. Biology and Fertility of Soils, 21(3), 149–151.
https://doi.org/10.1007/bf00335926
Petrakis, S., Seyfferth, A., Kan, J., Inamdar, S., & Vargas, R. (2017). Influence of experimental extreme water pulses on greenhouse gas emissions from soils. Biogeochemistry, 133(2), 147–164. https://doi.org/10.1007/s10533-017-0320-2
Pooja, P. (2022). Impact of COVID-19 and Climate Change on Indian Agriculture. Emerging Trends in Climate Change, 1(1), 29–36. https://doi.org/10.18782/2583-4770.104
Richards, J. H., & Caldwell, M. M. (1987). Hydraulic lift: Substantial nocturnal water transport between soil layers by Artemisia tridentata roots. Oecologia, 73(4), 486–489.
https://doi.org/10.1007/bf00379405
Russell, D., & Franzel, S. (2004). Trees of prosperity: Agroforestry, markets and the African smallholder. Agroforestry Systems, 61–62(1–3), 345–355. https://doi.org/10.1023/b:agfo.0000029009.53337.33
Singh, K., Ram, M., & Kumar, A. (2010). FORTY YEARS OF PAPAYA RESEARCH AT PUSA, BIHAR, INDIA. Acta Horticulturae, (851), 81–88.
https://doi.org/10.17660/actahortic.2010.851.9
Smith, C. A., Haynes, K. N., Lazarus, R. S., & Pope, L. K. (1993). In search of the “hot” cognitions: Attributions, appraisals, and their relation to emotion. Journal of Personality and Social Psychology, 65(5), 916–929. https://doi.org/10.1037//0022-3514.65.5.916
Tschakert, P. (2004). The costs of soil carbon sequestration: an economic analysis for small-scale farming systems in Senegal. Agricultural Systems, 81(3), 227–253.
https://doi.org/10.1016/j.agsy.2003.11.004
How to cite this article: Ahmad, A., Ali, M. N., Mukul, and Shroti, S. K. (2021). Livelihood security in climate change by Agro forestry. Chemical and Environmental Science Archives, Vol. 1 (1), 27-30
Licence Article Metadata
This work is licensed under a Creative Commons Attribution 4.0 International License.