Salam S. Ahmed¹, Warqaa Latef Salman² and Noor Ghazi Saab³

 ¹Clinical & Medical Biochemistry–A General Pediatrician, College of Medicine–University of Tikrit, Iraq

²College of Applied Sciences, Department of Pathological Analysis, University of Samarra, Iraq

³College of Dentistry, Department of Basic Science, University of Tikrit, Iraq

Received: July 12, 2022/ Revised:  Aug 23, 2022/ Accepted: Aug 25, 2022

(✉) Corresponding Author: Warqaa.l.s88@uosamarra.edu.iq

Abstract

Nanotechnology advancements have ushered in a new era of disease and traumatic injury detection, prevention, and therapy. Nanomaterials, especially those with clinical promise, have new physicochemical features that affect their physiological interactions at all levels, from the molecular to the systemic. For the detection and characterisation of nanomaterials, there are no established techniques or regulatory processes.

Keywords: Nanotechnology , Physiochemical , TiO2 , polyethyleneimine

References

Baoum, A., Dhillon, N., Buch, S., & Berkland, C. (2010). Cationic surface modification of PLG nanoparticles offers sustained gene delivery to pulmonary epithelial cells. Journal of pharmaceutical sciences99(5), 2413-2422.

Bhattacharjee, S., de Haan, L. H., Evers, N. M., Jiang, X., Marcelis, A., Zuilhof, H., … & Alink, G. M. (2010). Role of surface charge and oxidative stress in cytotoxicity of organic monolayer-coated silicon nanoparticles towards macrophage NR8383 cells. Particle and fibre toxicology7(1), 1-12.

Briscoe, C. J., & Hage, D. S. (2009). Factors affecting the stability of drugs and drug metabolites in biological matrices.

Buzea, C., Pacheco, I. I., & Robbie, K. (2007). Nanomaterials and nanoparticles: sources and toxicity. Biointerphases2(4), MR17-MR71.

Champion, J. A., & Mitragotri, S. (2009). Shape induced inhibition of phagocytosis of polymer particles. Pharmaceutical research26(1), 244-249.

Doshi, N., Prabhakarpandian, B., Rea-Ramsey, A., Pant, K., Sundaram, S., & Mitragotri, S. (2010). Flow and adhesion of drug carriers in blood vessels depend on their shape: a study using model synthetic microvascular networks. Journal of Controlled Release146(2), 196-200.

El Badawy, A. M., Silva, R. G., Morris, B., Scheckel, K. G., Suidan, M. T., & Tolaymat, T. M. (2011). Surface charge-dependent toxicity of silver nanoparticles. Environmental science & technology45(1), 283-287.

Etheridge, M. L., Campbell, S. A., Erdman, A. G., Haynes, C. L., Wolf, S. M., & McCullough, J. (2013). The big picture on nanomedicine: the state of investigational and approved nanomedicine products. Nanomedicine: nanotechnology, biology and medicine9(1), 1-14.

French, R. A., Jacobson, A. R., Kim, B., Isley, S. L., Penn, R. L., & Baveye, P. C. (2009). Influence of ionic strength, pH, and cation valence on aggregation kinetics of titanium dioxide nanoparticles. Environmental science & technology43(5), 1354-1359.

George, S., Lin, S., Ji, Z., Thomas, C. R., Li, L., Mecklenburg, M., … & Nel, A. E. (2012). Surface defects on plate-shaped silver nanoparticles contribute to its hazard potential in a fish gill cell line and zebrafish embryos. ACS nano6(5), 3745-3759.

Gref, R., Minamitake, Y., Peracchia, M. T., Trubetskoy, V., Torchilin, V., & Langer, R. (1994). Biodegradable long-circulating polymeric nanospheres. Science263(5153), 1600-1603.

Hachani, R., Lowdell, M., Birchall, M., & Thanh, N. T. K. (2013). Tracking stem cells in tissue-engineered organs using magnetic nanoparticles. Nanoscale5(23), 11362-11373.

Hall, J. B., Dobrovolskaia, M. A., Patri, A. K., & McNeil, S. E. (2007). Characterization of nanoparticles for therapeutics.

Hardman, R. (2006). A toxicologic review of quantum dots: toxicity depends on physicochemical and environmental factors. Environmental health perspectives114(2), 165-172.

Horvath, L., Magrez, A., Burghard, M., Kern, K., Forro, L., & Schwaller, B. (2013). Evaluation of the toxicity of graphene derivatives on cells of the lung luminal surface. Carbon64, 45-60.

Hull, M., & Bowman, D. (Eds.). (2018). Nanotechnology environmental health and safety: risks, regulation, and management. William Andrew.

Jiang, W., Kim, B., Rutka, J. T., & Chan, W. C. (2008). Nanoparticle-mediated cellular response is size-dependent. Nature nanotechnology3(3), 145-150.

Jiang, X., Qu, W., Pan, D., Ren, Y., Williford, J. M., Cui, H., … & Mao, H. Q. (2013). Plasmid‐templated shape control of condensed DNA–block copolymer nanoparticles. Advanced materials25(2), 227-232.

Kim, T. H., Kim, M., Park, H. S., Shin, U. S., Gong, M. S., & Kim, H. W. (2012). Size‐dependent cellular toxicity of silver nanoparticles. Journal of biomedical materials research Part A100(4), 1033-1043.

Kim, T. H., Lee, S., & Chen, X. (2013). Nanotheranostics for personalized medicine. Expert review of molecular diagnostics13(3), 257-269.

Liu, Y., Li, W., Lao, F., Liu, Y., Wang, L., Bai, R., … & Chen, C. (2011). Intracellular dynamics of cationic and anionic polystyrene nanoparticles without direct interaction with mitotic spindle and chromosomes. Biomaterials32(32), 8291-8303.

Maskos, M., Stauber, R.H. (2011). Characterization of nanoparticles in biological environments. In Comprehensive Biomaterials, Ducheyne, P., Ed.; Elsevier: Oxford, UK, pp. 329–339.

Mitragotri, S. (2009). In drug delivery, shape does matter. Pharmaceutical research26(1), 232-234.

Park, Y. H., Bae, H. C., Jang, Y., Jeong, S. H., Lee, H. N., Ryu, W. I., … & Son, S. W. (2013). Effect of the size and surface charge of silica nanoparticles on cutaneous toxicity. Molecular & Cellular Toxicology9(1), 67-74.

Patri, A., Dobrovolskaia, M,, Stern, S., McNeil, S, Amiji, M. (2006). Preclinical characterization of engineered nanoparticles intended for cancer therapeutics. Nanotechnology for cancer therapy. CRC Press; 105–38.

Pleus R. Nanotechnologies— guidance on physicochemical characterization of engineered nanoscale materials for toxicologic assessment; 2012.

Powers, K. W., Brown, S. C., Krishna, V. B., Wasdo, S. C., Moudgil, B. M., & Roberts, S. M. (2006). Research strategies for safety evaluation of nanomaterials. Part VI. Characterization of nanoscale particles for toxicological evaluation. Toxicological Sciences90(2), 296-303.

Powers, K. W., Palazuelos, M., Brown, S. C., & Roberts, S. M. (2009). Characterization of nanomaterials for toxicological evaluation. Nanotoxicology From In Vivo and In Vitro Models to Health Risks.(S. Sahu and D. Casciano, Eds.), 1-27.

Ratner, B.D., Hoffman, A.S., Schoen, F.J., Lemons, J.E. (2004) Biomaterials science: an introduction to materials in medicine. Academic Press.

Shekunov, B. Y., Chattopadhyay, P., Tong, H. H., & Chow, A. H. (2007). Particle size analysis in pharmaceutics: principles, methods and applications. Pharmaceutical research24(2), 203-227.

Sohaebuddin, S. K., Thevenot, P. T., Baker, D., Eaton, J. W., & Tang, L. (2010). Nanomaterial cytotoxicity is composition, size, and cell type dependent. Particle and fibre toxicology7(1), 1-17.

Takagi, A., Hirose, A., Nishimura, T., Fukumori, N., Ogata, A., Ohashi, N., … & Kanno, J. (2008). Induction of mesothelioma in p53+/− mouse by intraperitoneal application of multi-wall carbon nanotube. The Journal of toxicological sciences33(1), 105-116.

How to cite this article

Ahmed, S.S., Salman, W.L., Saab, N.G. (2022). Physiochemical properties of nanoparticles. Chemical and Environmental Science Archives, Vol. 2 (3), 26-30. http://dx.doi.org/10.47587/CESA.2022.2303

License                      Article Metadata

This work is licensed under a Creative Commons Attribution 4.0 International License.

View Details