Ansam Saad Al-Khafaji¹✉ and Ibtehal Aqeel Al-Taee²
¹Department of Desert Studies Center and Sawa Lake, Al-Muthanna University, Samawah, Iraq
²Department of Biology, College of Science, Muthanna University, Samawa, Iraq
Received: Jul, 21/ Revised: Aug 17, 2023/ Accepted: Aug 20, 2023
(✉) Corresponding Author: ansam.saad@mu.edu.iq
Abstract
Microalgae are microscopic autotrophic organisms that are typically seen in freshwater and ocean water. ecosystem and they are considered among the fastest organisms because they have a very fast life cycle Growth on Earth, as they use all available materials for growth, and they contain many effective compounds of biological, pharmacological and environmental importance. Algae contain carotenoids, which are granules that give a yellow-orange color and are found within the plastid. Carotenoids generated from microalgae are a class of accessory pigments that have the capacity to absorb light and are crucial for metabolic processes. A very small number of microalgae have been employed for the commercial production of carotenoids, although around a thousand carotenoids have been reported to date. Beta-carotene is one of the most important types of natural carotenoids synthesized by plants, and algae. In recent years, interest in it has increased greatly, and the reason for this is due to the large number of evidence indicating its benefits and importance to human health. The carotenoids of microalgae origin were briefly examined in this review. In addition, determining the effect of Salinity, light intensity, nutrients, and pH on the production and quantity of beta-carotene in some species of Green algae (Chlorophyta).
Keywords: Chlorophyta, β-carotene, some Environmental Factors
References
Ahmad, O. A., Salama, A. J., & Chithambaran, S. (2015). Dietary supplementation of Dunaliella salina on growth performance and body composition of Indian white shrimp Fenneropenaeus indicus (H. Milne Edwards). Journal of marine biology and aquaculture, 1(1), 16-20.
Anon, A. (1983). Effect of pH on Dunaliella bardawil Biomass and Production of Carotenoids.
Baweja, P., & Sahoo, D. (2015). Classification of algae. The algae world, 31-55.
Becerra-Dórame, M. J., López-Elías, J. A., Enríquez-Ocaña, F., Huerta-Aldaz, N., Voltolina, D., Osuna-López, I., & Izaguirre-Fierro, G. (2010, April). The effect of initial cell and nutrient concentrations on the growth and biomass production of outdoor cultures of Dunaliella sp. In Annales Botanici Fennici (Vol. 47, No. 2, pp. 109-112). Finnish Zoological and Botanical Publishing Board.
Ben-Amotz, A. (2007). “Handbook of microalgal culture: Biotechnology and Appl. phycology.”
Ben-Amotz, A., & Avron, M. (1983). On the factors which determine massive β-carotene accumulation in the halotolerant alga Dunaliella bardawil. Plant physiology, 72(3), 593-597.
Bhatnagar, A., Kumar, E., & Sillanpää, M. (2011). Fluoride removal from water by adsorption—a review. Chemical engineering journal, 171(3), 811-840.
Borowitzka, M.A. & Borowitzka, L.J. (1988). In Micro-algal. Biotechnology, eds. Borowitzka, M.A., pp. 27–58. Cambridge: Cambridge University Press. ISBN 0-521-32349-5
Borowitzka, M. A., & Siva, C. J. (2007). The taxonomy of the genus Dunaliella (Chlorophyta, Dunaliellales) with emphasis on the marine and halophilic species. Journal of Applied Phycology, 19, 567-590.
Britton, G., Pfander, H., Liaaen-Jensen, S., (Eds.). (2008). Carotenoids, Birkhäuser Verlag, 4: natural functions. pp. 189–211.
Concepcion, M. R., Avalos, J., Bonet, M. L., Boronat, A., Gomez-Gomez, L., Hornero-Mendez, D., & Zhu, C. (2018). A global perspective on carotenoids: Metabolism, biotechnology, and benefits for nutrition and health. Progress in lipid research, 70, 62-93.https://doi.org/10.1016/j.plipres.2018.04.004
Contreras, F., Baykal, E., & Abid, G. (2020). E-leadership and teleworking in times of COVID-19 and beyond: What we know and where do we go. Frontiers in psychology, 11, 590271.
Coppens, J., Grunert, O., Van Den Hende, S., Vanhoutte, I., Boon, N., Haesaert, G., & De Gelder, L. (2016). The use of microalgae as a high-value organic slow-release fertilizer results in tomatoes with increased carotenoid and sugar levels. Journal of applied phycology, 28, 2367-2377.
D’Alessandro, E. B., & Antoniosi Filho, N. R. (2016). Concepts and studies on lipid and pigments of microalgae: A review. Renewable and Sustainable Energy Reviews, 58, 832-841.
Eldahshan, O. A., & Singab, A. N. B. (2013). Journal of Pharmacognosy and Phytochemistry. J. Pharmacogn. Phytochem. Carotenoids, 2(1), 225-234.
Emeish, S. (2013). Production of natural biopharmaceuticals from the microalgae living in the Dead Sea. Journal of Environmental and Earth Science, 3(10), 6-15.
Essa, A. M. (1995). Osmoregulatory metabolites accumulated in halophilic algae grown on organic wastes. M. Sc., Cairo University, Egypt.
Fachet, M., Hermsdorf, D., Rihko-Struckmann, L., & Sundmacher, K. (2016). Flow cytometry enables dynamic tracking of algal stress response: a case study using carotenogenesis in Dunaliella salina. Algal research, 13, 227-234.
Faraloni, C., & Torzillo, G. (2017). Synthesis of antioxidant carotenoids in microalgae in response to physiological stress (pp. 143-157). United Kingdom: IntechOpen.
Gateau, H., Solymosi, K., Marchand, J., & Schoefs, B. (2017). Carotenoids of microalgae used in food industry and medicine. Mini reviews in medicinal chemistry, 17(13), 1140-1172.
González, M. G., Moreno, J., Manzano, J. C., Florencio, F. J., & Guerrero, M. G. (2005). Production of Dunaliella salina biomass rich in 9-cis-β-carotene and lutein in a closed tubular photobioreactor. Journal of biotechnology, 115(1), 81-90.
Goodwin, T. (2012). The biochemistry of the carotenoids: volume I plants. Springer Science & Business Media.
Guedes, A. C., Amaro, H. M., Pereira, R. D., & Malcata, F. X. (2011). Effects of temperature and pH on growth and antioxidant content of the microalga Scenedesmus obliquus. Biotechnology progress, 27(5), 1218-1224.
Hadi, M. R., Shariati, M., & Afsharzadeh, S. (2008). Microalgal biotechnology: Carotenoid and glycerol production by the green algae Dunaliella isolated from the Gave-Khooni salt marsh, Iran. Biotechnology and Bioprocess Engineering, 13, 540-544.
Hannah, C., Mani, M., & Ramasamy, R. (2013). Evaluation of the biochemical composition of four marine algae and its nutritional value for brine shrimp. IOSR Journal of Pharmacy and Biological Sciences, 6(3), 47-51.
Hejazi, M. A., Barzegari, A., Gharajeh, N. H., & Hejazi, M. S. (2010). Introduction of a novel 18S rDNA gene arrangement along with distinct ITS region in the saline water microalga Dunaliella. Saline Systems, 6(1), 1-11.
Henríquez, V., Escobar, C., Galarza, J., & Gimpel, J. (2016). Carotenoids in microalgae. Carotenoids in nature: biosynthesis, regulation and function, 219-237.
Hosseini, A. T. & Shariati, M. (2006). Pilot culture of three strains of Dunaliella salina for β-carotene production in open ponds in the central region of Iran. World Journal of Microbiology and Biotechnology, 22, 1003-1006.
Hosseini T. A., & Shariati, M. (2009). Dunaliella biotechnology: methods and applications. Journal of applied microbiology, 107(1), 14-35.
Hosseinzadeh, N. G., Valizadeh, M., Dorani, E., & Hejazi, M. A. (2020). Biochemical profiling of three indigenous Dunaliella isolates with main focus on fatty acid composition towards potential biotechnological application. Biotechnology Reports, 26, e00479.
Jaswir, I., Noviendri, D., Hasrini, R. F., & Octavianti, F. (2011). Carotenoids: Sources, medicinal properties and their application in food and nutraceutical industry. J. Med. Plants Res, 5(33), 7119-7131.
Kanzy, H. M., Nasr, N. F., El-Shazly, H. A. M. and Barakat, O. S. (2015). Optimization of carotenoids production by yeast strains of Rhodotorula using salted cheese whey. Int J Curr Microbiol App Sci 4:456–469. https://doi.org/10.13040/IJPSR.0975-8232.6(3).1161-65
Khalil, Z. I., Asker, M. M., El-Sayed, S., & Kobbia, I. A. (2010). Effect of pH on growth and biochemical responses of Dunaliella bardawil and Chlorella ellipsoidea. World Journal of Microbiology and Biotechnology, 26, 1225-1231.
Lamers, P. P., Janssen, M., De Vos, R. C., Bino, R. J., & Wijffels, R. H. (2012). Carotenoid and fatty acid metabolism in nitrogen-starved Dunaliella salina, a unicellular green microalga. Journal of biotechnology, 162(1), 21-27.
Le Goff, M., Le Ferrec, E., Mayer, C., Mimouni, V., Lagadic-Gossmann, D., Schoefs, B., & Ulmann, L. (2019). Microalgal carotenoids and phytosterols regulate biochemical mechanisms involved in human health and disease prevention. Biochimie, 167, 106-118.
Liang, C., Zhai, Y., Xu, D., Ye, N., Zhang, X., Wang, Y., … & Yu, J. (2015). Correlation between lipid and carotenoid synthesis and photosynthetic capacity in Haematococcus pluvialis grown under high light and nitrogen deprivation stress. Fats and Oils, 66(2), e077-e077.
Lin, H., Fang, L., Low, C. S., Chow, Y., & Lee, Y. K. (2013). Occurrence of glycerol uptake in D unaliella tertiolecta under hyperosmotic stress. The FEBS Journal, 280(4), 1064-1072.
Liu, C., Hu, B., Cheng, Y., Guo, Y., Yao, W., & Qian, H. (2021). Carotenoids from fungi and microalgae: A review on their recent production, extraction, and developments. Bioresource Technology, 337, 125398.
Loeblich, L. A. (1982). Photosynthesis and pigments influenced by light intensity and salinity in the halophile Dunaliella salina (Chlorophyta). Journal of the Marine Biological Association of the United Kingdom, 62(3), 493-508.
Loeblich, L. A. (1972). Studies on the brine flagellate Dunaliella salina. University of California, San Diego.
Madhumathi, M., & Rengasamy, R. (2011). Antioxidant status of Penaeus monodon fed with Dunaliella salina supplemented diet and resistance against WSSV. Int. J. Eng. Sci. Technol, 3(10), 7249-7259.
Mao, Y., Zhang, H., Xu, N., Zhang, B., Gou, F., & Zhu, J. K. (2013). Application of the CRISPR–Cas system for efficient genome engineering in plants. Molecular plant, 6(6), 2008-2011.
Marinoa, T., Casellab, P., Sangiorgioc, P., Verardic, A., Ferrarod, A., Hristoforoud, E., … & Musmarraa, D. (2020). Natural beta-carotene: A microalgae derivate for nutraceutical applications. Chemical Engineering, 79.
Massyuk, N. P. (1968). Mass culture of the carotene bearing alga Dunaliella salina. Ukr Bot Zh, 23, 12-19.
Massyuk, N. P., & Abdula, E. G. (1969). First experiment of growing carotene-containing algae under semi-industrial conditions. Ukr. Bot. Zh, 26, 21-27.
Mohebbi, F., Hafezieh, M., Seidgar, M., Hosseinzadeh Sahhafi, H., Mohsenpour Azari, A., & Ahmadi, R. (2016). The growth, survival rate and reproductive characteristics of Artemia urmiana fed by Dunaliella tertiolecta, Tetraselmis suecica, Nannochloropsis oculata, Chaetoceros sp., Chlorella sp. and Spirolina sp. as feeding microalgae.
Mussagy, C. U., Winterburn, J., Santos-Ebinuma, V. C., & Pereira, J. F. B. (2019). Production and extraction of carotenoids produced by microorganisms. Applied microbiology and biotechnology, 103, 1095-1114.
Muthukannan, P., Jayapriyan, K., & Rengasamy, R. (2010). In vitro evaluation of β-carotene production in two different strains of Dunaliella salina Teodoresco (Chlorophyta). J. Biosci. Res, 1, 83-87.
Niyogi, K. K., Bjorkman, O., & Grossman, A. R. (1997). Chlamydomonas xanthophyll cycle mutants identified by video imaging of chlorophyll fluorescence quenching. The Plant Cell, 9(8), 1369-1380.
Niyogi, K. K., Björkman, O., & Grossman, A. R. (1997). The roles of specific xanthophylls in photoprotection. Proceedings of the National Academy of Sciences, 94(25), 14162-14167.
Olmos, J., Paniagua, J., & Contreras, R. (2000). Molecular identification of Dunaliella sp. utilizing the 18S rDNA gene. Letters in applied microbiology, 30(1), 80-84.
Olmos-Soto, J., Paniagua-Michel, J., Contreras, R., & Trujillo, L. (2002). Molecular identification of β-carotene hyper-producing strains of Dunaliella from saline environments using species-specific oligonucleotides. Biotechnology Letters, 24, 365-369.
Oren, A. (2005). A hundred years of Dunaliella research: 1905–2005. Saline systems, 1, 1-14.
Pailliè-Jiménez, M. E., Stincone, P., & Brandelli, A. (2020). Natural pigments of microbial origin. Frontiers in Sustainable Food Systems, 4, 590439.
Phadwal, K., & Singh, P. K. (2003). Isolation and characterization of an indigenous isolate of Dunaliella sp. for β‐carotene and glycerol production from a hypersaline lake in India. Journal of Basic Microbiology: An International Journal on Biochemistry, Physiology, Genetics, Morphology, and Ecology of Microorganisms, 43(5), 423-429.
Pisal, D. S., & Lele, S. S. (2005). Carotenoid production from microalga, Dunaliella salina.
Qiang, S., Su, A. P., Li, Y., Chen, Z., Hu, C. Y., & Meng, Y. H. (2019). Elevated β-carotene synthesis by the engineered Rhodobacter sphaeroides with enhanced CrtY expression. Journal of agricultural and food chemistry, 67(34), 9560-9568.
Rad, F. A., Aksoz, N., & Hejazi, M. A. (2011). Effect of salinity on cell growth and β-carotene production in Dunaliella sp. isolates from Urmia Lake in northwest of Iran. African Journal of Biotechnology, 10(12), 2282-2289.
Recht, L., Töpfer, N., Batushansky, A., Sikron, N., Gibon, Y., Fait, A., … & Zarka, A. (2014). Metabolite profiling and integrative modeling reveal metabolic constraints for carbon partitioning under nitrogen starvation in the green algae Haematococcus pluvialis. Journal of Biological Chemistry, 289(44), 30387-30403.
Saini, R. K., & Keum, Y. S. (2017). Progress in microbial carotenoids production. Indian Journal of Microbiology, 57, 129-130.
Spolaore, P., Joannis-Cassan, C., Duran, E., & Isambert, A. (2006). Commercial applications of microalgae. Journal of bioscience and bioengineering, 101(2), 87-96.
Straub, O. (1987). List of Natural Carotenoids in Key to Carotenoids. by Pfander H., Birkhäuser Verlag, Basel.
Telfer, A. (2002). What is β–carotene doing in the photosystem II reaction centre? Philosophical Transactions of the Royal Society of London. Series B: Biological Sciences, 357(1426), 1431-1440.
Torzillo, G., Faraloni, C., Silva, A. M., Kopecký, J., Pilný, J., & Masojídek, J. (2012). Photoacclimation of Phaeodactylum tricornutum (Bacillariophyceae) cultures grown outdoors in photobioreactors and open ponds. European Journal of Phycology, 47(2), 169-181.
Wegmann, K., & Metzner, H. (1971). Synchronization of Dunaliella cultures. Archiv für Mikrobiologie, 78, 360-367.
Wu, Z., Duangmanee, P., Zhao, P., Juntawong, N., & Ma, C. (2016). The effects of light, temperature, and nutrition on growth and pigment accumulation of three Dunaliella salina strains isolated from saline soil. Jundishapur Journal of Microbiology, 9(1).
How to cite this article
Al-Khafaji, A. S. and Al-Taee, I. A. (2023). Effect of environmental factors on β-carotene production in green algae – A review. Chemical and Environmental Science Archives, Vol. 3(3), 48-54. https://doi.org/10.47587/CESA.2023.3301
Licence Article Metadata
This work is licensed under a Creative Commons Attribution 4.0 International License.