Ahmed. H. Mosa1, Mohammad. M. Zenad2, Hamed A. H. Al-jabory3, Sarah I. K. AL-Anawe4& Marwah Najeh Hamood5

1,3Departrment of Internal and Preventive Veterinary Medicine, College of Veterinary Medicine, AL-Qasim Green University, Babylon, Iraq

2Department of Internal and Preventive Veterinary Medicine, College of Veterinary Medicine,vUniversity of Baghdad, Iraq

4,5Department  of Physiology, Biochemistry and Pharmacology, College of Veterinary Medicine, AL-Qasim Green University, Babylon, Iraq

*Corresponding author: Ahmedvet@vet.uoqasim.edu.iq

Abstract

 Maedi-Visna virus belonged to a lentiviruus genus which is one of two subfamilies of retroviridae family, the name retro refers to ”reverse, backward” derives from the reverse transcriptase (RNA-dependent DNA polymerase). Morphologically, MV virus is enveloped derived from the host cell membrane, it is spherically shaped with a diameter from 80–100 mμ, consists of three-layered structures, the envelope has tiny spikes (about 8 nm) dispersed evenly over the structure. The core structure is cylindrical and composed of gag proteins: p24, p17, p9, and p7. The MVV genome is comprised of a single sense, two identical positive and stranded RNA subunits each strand contains three structural genes: env, gag, and pol, three regulatory genes include rev, vif and tat, and long terminal repetitive regions, non-coding (LTRs). Infection with MVV causes dyspnea, loss of weight, mastitis, and arthritis, depending on where the lesions are located. This virus causes antibodies to develop, which you may test for using agar gel immunodiffusion, ELISA, and serum neutralization assays Because there is no antiviral therapy or vaccine available, diagnostic testing constitutes the backbone of most prevention strategies. Due to the limitations of sensitivity and specificity of current serological tests, molecular biological techniques are being developed to identify viruses in peripheral blood and milk samples as well as tissue samples.

Keywords   MVV, Virus, Sheep, Lentivirus

How to cite this article:

Mosa, A.H., Zenad, M.M., Al-jabory, H.A.H. AL-Anawe, S.L.K. & Hamood, M.N. (2021). A new approach for maedi visna virus infections: a review. Chemical and Environmental Science Archives, Vol. 1 (1), 5-15

References

 Adjadj, N. R., Vicca, J., Michiels, R., & De Regge, N. (2020). (Non-) Sense of milk testing in small ruminant Lentivirus control programs in goats. Comparative Analysis of Antibody Detection and Molecular Diagnosis in Blood and Milk. Viruses12(1), 3.

Akkan, H. A., Karaca, M., Tütüncü, M., Keles, I., Ilhan, F., Cetin, Y., & Tasal, I. (2009). Investigation of the seroprevalance of maedi-visna in the region of Van using Elisa and histopathological findings. Journal of Animal and Veterinary Advances8(8), 1495-1498.

Al Ahmad, M. A., Chebloune, Y., Chatagnon, G., Pellerin, J. L., & Fieni, F. (2012). Is caprine arthritis encephalitis virus (CAEV) transmitted vertically to early embryo development stages (morulae or blastocyst) via in vitro infected frozen semen?. Theriogenology77(8), 1673-1678.

Al Ahmad, M. A., Fieni, F., Pellerin, J. L., Guiguen, F., Cherel, Y., Chatagnon, G. & Chebloune, Y. (2008). Detection of viral genomes of caprine arthritis-encephalitis virus (CAEV) in semen and in genital tract tissues of male goat. Theriogenology69(4), 473-480.

Allbasoglu, M. and Arda, M. (1975). Sheep pulmonary adenomatosis to investigate the etiology and pathology of the situation in Turkey. (Turkey). Tübitak Vhag Publishing, p274.

Alvarez, V., Daltabuit-Test, M., Arranz, J., Leginagoikoa, I., Juste, R. A., Amorena, B., & Berriatua, E. (2006). PCR detection of colostrum-associated Maedi-Visna virus (MVV) infection and relationship with ELISA-antibody status in lambs. Research in Veterinary Science80(2), 226-234.

Alves, S. M., Teixeira, M. D. S., Pinheiro, R. R., Alves, F. S. F., Lima, A. M. C., de Farias, D. A., … & AGUIAR, T. D. F. (2018). Seroepidemiological study of maedi-visna in sheep in Ceara, Rio Grande do Norte, Paraíba, and Sergipe States. Embrapa Caprinos e Ovinos-Artigo em periódico indexado (ALICE).

Ameen, P. S., & Karapınar, Z. (2018). Seroprevalence of visna-maedi virus (vmv) and border disease virus (bdv) in van province and around. Arquivo Brasileiro de Medicina Veterinária e Zootecnia70, 1029-1035.

Arsenault, J., Dubreuil, P., Girard, C., Simard, C., & Bélanger, D. (2003). Maedi-visna impact on productivity in Quebec sheep flocks (Canada). Preventive Veterinary Medicine59(3), 125-137.

Asadpour, R., Paktinat, S., Ghassemi, F., & Jafari, R. (2014). Study on correlation of Maedi-Visna virus (MVV) with ovine subclinical mastitis in Iran. Indian journal of microbiology54(2), 218-222.

Barquero, N., Domenech, A., & Gomez-Lucia, E. (2015). Infections by Small Ruminant Lentiviruses. Saarbrücken, Germany: LAP Lambert Academic Publishing.

Barták, P., Šimek, B., Václavek, P., Čurn, V., Plodková, H., Tonka, T., … & Vejčík, A. (2018). Genetic characterisation of small ruminant lentiviruses in sheep and goats from the Czech Republic. Acta Veterinaria Brno87(1), 19-26.

Benavides, J., Fuertes, M., Garcia-Pariente, C., Ferreras, M. C., Marin, J. G., & Perez, V. (2006). Natural cases of visna in sheep with myelitis as the sole lesion in the central nervous system. Journal of comparative pathology134(2-3), 219-230.

Benavides, J., García-Pariente, C., Ferreras, M. C., Fuertes, M., García-Marín, J. F., & Pérez, V. (2007). Diagnosis of clinical cases of the nervous form of Maedi-Visna in 4-and 6-month-old lambs. The Veterinary Journal174(3), 655-658.

Berriatua, E., Álvarez, V., Extramiana, B., González, L., Daltabuit, M., & Juste, R. (2003). Transmission and control implications of seroconversion to Maedi-Visna virus in Basque dairy-sheep flocks. Preventive veterinary medicine60(4), 265-279.

Blacklaws, B. A. (2012). Small ruminant lentiviruses: Immunopathogenesis of visna-maedi and caprine arthritis and encephalitis virus. Comparative immunology, microbiology and infectious diseases35(3), 259-269.

Blacklaws, B. A., Berriatua, E., Torsteinsdottir, S., Watt, N. J., De Andres, D., Klein, D., & Harkiss, G. D. (2004). Transmission of small ruminant lentiviruses. Veterinary Microbiology101(3), 199-208.

Borman, A. M., Quillent, C., Charneau, P., Dauguet, C., & Clavel, F. (1995). Human immunodeficiency virus type 1 Vif-mutant particles from restrictive cells: role of Vif in correct particle assembly and infectivity. Journal of virology69(4), 2058-2067.

Bose, D., Gagnon, J., & Chebloune, Y. (2015). Comparative analysis of Tat-dependent and Tat-deficient natural lentiviruses. Veterinary sciences2(4), 293-348.

Brellou, G. D., Angelopoulou, K., Poutahidis, T., & Vlemmas, I. (2007). Detection of Maedi-Visna Virus in the liver and heart of naturally infected sheep. Journal of comparative pathology136(1), 27-35.

Cardinaux, L., Zahno, M. L., Deubelbeiss, M., Zanoni, R., Vogt, H. R., & Bertoni, G. (2013). Virological and phylogenetic characterization of attenuated small ruminant lentivirus isolates eluding efficient serological detection. Veterinary microbiology162(2-4), 572-581.

Chakravorty, S., & Hegde, M. (2017). Gene and variant annotation for Mendelian disorders in the era of advanced sequencing technologies. Annual review of genomics and human genetics18, 229-256.

Chassalevris, T., Chaintoutis, S. C., Apostolidi, E. D., Giadinis, N. D., Vlemmas, I., Brellou, G. D., & Dovas, C. I. (2020). A highly sensitive semi-nested real-time PCR utilizing oligospermine-conjugated degenerate primers for the detection of diverse strains of small ruminant lentiviruses. Molecular and cellular probes51, 101528.

Christodoulopoulos, G. (2006). Maedi–Visna: Clinical review and short reference on the disease status in Mediterranean countries. Small Ruminant Research62(1-2), 47-53.

Clements, J. E., & Zink, M. C. (1996). Molecular biology and pathogenesis of animal lentivirus infections. Clinical microbiology reviews9(1), 100-117.

Coffin, J. M., Hughes, S. H., & Varmus, H. E. (1997). Retroviruses.

Cowdry, E. V. (1925). STUDIES ON THE ETIOLOGY OF JAGZIEKTE: II. Origin of the Epithelial Proliferations, and the Subsequent Changes. The Journal of experimental medicine42(3), 335-345.

Cowdry, E. V., & Marsh, H. (1927). Comparative pathology of South African jagziekte and Montana progressive pneumonia of sheep. The Journal of experimental medicine45(4), 571-585.

Creer, T. L., Bender, B. G., & Lucas, D. O. (2002). Diseases of the respiratory system.

Cutlip, R. C., Lehmkuhl, H. D., Brogden, K. A., & Bolin, S. R. (1985). Mastitis associated with ovine progressive pneumonia virus infection in sheep. American journal of veterinary research46(2), 326-328.

Danchin, E., Pocheville, A., Rey, O., Pujol, B., & Blanchet, S. (2019). Epigenetically facilitated mutational assimilation: epigenetics as a hub within the inclusive evolutionary synthesis. Biological Reviews94(1), 259-282.

De Andres, D., Klein, D., Watt, N. J., Berriatua, E., Torsteinsdottir, S., Blacklaws, B. A., & Harkiss, G. D. (2005). Diagnostic tests for small ruminant lentiviruses. Veterinary Microbiology107(1-2), 49-62.

De Kock, G. (1929). Are the lesions of Jaagsiekte in sheep of the nature of a neoplasm. vet. Serv., 15th ann. Rep, 611-641.

de la Concha-Bermejillo, A. (1997). Maedi-visna and ovine progressive pneumonia. Veterinary Clinics of North America: Food Animal Practice13(1), 13-34.

Dousti, M., Sayyari, M., & Esmailnejad, A. (2020). Histopathological, serological, molecular and electron microscopy detection of Maedi-Visna infection in sheep population in the West of Iran. Iranian Journal of Veterinary Research21(2), 103.

Dungu, B., Vorster, J., Bath, G. F., & Verwoerd, D. W. (2000). The effect of a natural maedi-visna virus infection on the productivity of South African sheep.

Echeverría, I., de Miguel, R., Asín, J., Rodríguez-Largo, A., Fernández, A., Pérez, M., & Reina, R. (2020). Replication of small ruminant lentiviruses in aluminum hydroxide-induced granulomas in sheep: a potential new factor for viral dissemination. Journal of Virology95(2), e01859-20.

Extramiana, A. B., González, L., Cortabarrıa, N., Garcıa, M., & Juste, R. A. (2002). Evaluation of a PCR technique for the detection of Maedi-Visna proviral DNA in blood, milk and tissue samples of naturally infected sheep. Small Ruminant Research44(2), 109-118.

Fauquet, C. M., Mayo, M. A., Maniloff, J., Desselberger, U., & Ball, L. A. (Eds.). (2005). Virus taxonomy: VIIIth report of the International Committee on Taxonomy of Viruses. Academic Press.

Fieni, F., Pellerin, J. L., Roux, C., Poulin, N., Baril, G., Fatet, A., … & Guignot, F. (2012). Can caprine arthritis encephalitis virus (CAEV) be transmitted by in vitro fertilization with experimentally infected sperm?. Theriogenology77(3), 644-651.

Franzdóttir, S. R., Ólafsdóttir, K., Jónsson, S. R., Strobel, H., Andrésson, Ó. S., & Andrésdóttir, V. (2016). Two mutations in the vif gene of maedi-visna virus have different phenotypes, indicating more than one function of Vif. Virology488, 37-42.

Gayo, E., Cuteri, V., Polledo, L., Rossi, G., García Marín, J. F., & Preziuso, S. (2018). Genetic Characterization and Phylogenetic Analysis of Small Ruminant Lentiviruses Detected in Spanish Assaf Sheep with Different Mammary Lesions. Viruses10(6), 315.

Gayo, E., Polledo, L., Magalde, A., Balseiro, A., Iglesias, M. G., Martínez, C. P., & Marín, J. G. (2019). Characterization of minimal lesions related to the presence of visna/maedi virus in the mammary gland and milk of dairy sheep. BMC veterinary research15(1), 1-9.

Gogolewski, R. P., Adams, D. S., McGUIRE, T. C., Banks, K. L., & Cheevers, W. P. (1985). Antigenic cross-reactivity between caprine arthritis-encephalitis, visna and progressive pneumonia viruses involves all virion-associated proteins and glycoproteins. Journal of general virology66(6), 1233-1240.

Gomez-Lucia, E., Barquero, N., & Domenech, A. (2018). Maedi-Visna virus: current perspectives. Veterinary Medicine: Research and Reports9, 11.

Gonda, M. A. (1994). Molecular Biology and Virus‐Host Interactions of Lentiviruses a. Annals of the New York Academy of Sciences724(1), 22-42.

González, L., Juste, R. A., Cuervo, L. A., Idigoras, I., & De Ocariz, C. S. (1993). Pathological and epidemiological aspects of the coexistence of maedi-visna and sheep pulmonary adenomatosis. Research in veterinary science54(2), 140-146.

Greenwood, P. L. (1995). Effects of caprine arthritis-encephalitis virus on productivity and health of dairy goats in New South Wales, Australia. Preventive Veterinary Medicine22(1-2), 71-87.

Gudmundsson, B., Bjarnadottir, H., Kristjansdottir, S., & Jonsson, J. J. (2003). Quantitative assays for maedi-visna virus genetic sequences and mRNA’s based on RT-PCR with real-time FRET measurements. Virology307(1), 135-142.

Gürçay, M., & Parmaksiz, A. (2013). An investigation of Visna-Maedi virus infection in Şanlıurfa Province, Southeast Anatolia, Turkey. AVKAE Derg3(1), 46-50.

Henriques, A. M., Fevereiro, M., & Monteiro, G. A. (2016). DNA Vaccines Against Maedi–Visna Virus. In Vaccine Design (pp. 59-76). Humana Press, New York, NY.

Herrmann-Hoesing, L. M., Noh, S. M., Snekvik, K. R., White, S. N., Schneider, D. A., Truscott, T., & Knowles, D. P. (2010). Ovine progressive pneumonia virus capsid antigen as found in CD163-and CD172a-positive alveolar macrophages of persistently infected sheep. Veterinary pathology47(3), 518-528.

Houwers, D. J., Visscher, A. H., & Defize, P. R. (1989). Importance of ewe/lamb relationship and breed in the epidemiology of maedi-visna virus infections. Research in veterinary science46(1), 5-8.

Ingvarsson, S. (2013). In memoriam Björn Sigurðsson born 100 years ago.

Jarczak, J., Słoniewska, D., Kaba, J., & Bagnicka, E. (2019). The expression of cytokines in the milk somatic cells, blood leukocytes and serum of goats infected with small ruminant lentivirus. BMC veterinary research15(1), 1-11.

Junkuszew, A., Dudko, P., Bojar, W., Olech, M., Osiński, Z., Gruszecki, T. M., & Czerski, G. (2016). Risk factors associated with small ruminant lentivirus infection in eastern Poland sheep flocks. Preventive veterinary medicine127, 44-49.

Juste, R. A., Villoria, M., Leginagoikoa, I., Ugarte, E., & Minguijon, E. (2020). Milk production losses in Latxa dairy sheep associated with small ruminant lentivirus infection. Preventive veterinary medicine176, 104886.

Keen, I. E., Hungerford, L. L., Wittum, T. E., Kwang, J., & Littledike, E. T. (1997). Rick factors for seroprevalence of ovine lentivirus in breeding ewe flocks in Nebraska, USA. Preventive veterinary medicine30(2), 81-94.

Kimberlin, R. H., & RH, K. (1976). Slow virus diseases of animals and man.

Kristbjörnsdóttir, H. B., Andrésdóttir, V., Svansson, V., Torsteinsdóttir, S., Matthı́asdóttir, S., & Andrésson, Ó. S. (2004). The vif gene of maedi-visna virus is essential for infectivity in vivo and in vitro. Virology318(1), 350-359.

Larruskain, A., & Jugo, B. M. (2013). Retroviral infections in sheep and goats: small ruminant lentiviruses and host interaction. Viruses5(8), 2043-2061.

Leginagoikoa, I., Minguijon, E., Berriatua, E., & Juste, R. A. (2009). Improvements in the detection of small ruminant lentivirus infection in the blood of sheep by PCR. Journal of virological methods156(1-2), 145-149.

Leroux, C., Lerondelle, C., Chastang, J., & Mornex, J. F. (1997). RT-PCR detection of lentiviruses in milk or mammary secretions of sheep or goats from infected flocks. Veterinary Research28(2), 115-121.

Lima, C. C. V., Ayres, M. C. C., Pinheiro, R. R., Costa, J. N., Andrioli, A., Souza, T. S., … & Costa, A. O. (2017). Caprine lentivirus in sheep milk and semen. Arquivo Brasileiro de Medicina Veterinária e Zootecnia69, 391-397.

Loman, D. C. (1862). Het Texels schaap. Magazijn voor Landbouw en Kruidkunde II, 66-70.

Luciw, P. A. (1992). Leung; NJ Mechanisms of retrovirus replication. In  “The Retroviridae “, Levy, JA.

Marsh, H. (1923). Progressive Pneumonia in Sheep. Journal of the American Veterinary Medical Assciation, 15: 458-473.

Mendiola, W. P., Tórtora, J. L., Martínez, H. A., García, M. M., Cuevas-Romero, S., Cerriteño, J. L., & Ramírez, H. (2019). Genotyping based on the LTR region of small ruminant lentiviruses from naturally infected sheep and goats from Mexico. BioMed research international2019.

Minguijón, E., Reina, R., Pérez, M., Polledo, L., Villoria, M., Ramírez, H., … & Juste, R. A. (2015). Small ruminant lentivirus infections and diseases. Veterinary Microbiology181(1-2), 75-89.

Mitchell, D. T. (1915). Investigations into jaagziekte or chronic catarrhal pneumonia of sheep. Vet. Educ. Res., 3rd and 4th Report, Union of South Africa, 585.

Murphy, B., McElliott, V., Vapniarsky, N., Oliver, A., & Rowe, J. (2010). Tissue tropism and promoter sequence variation in caprine arthritis encephalitis virus infected goats. Virus research151(2), 177-184.

Muz, D., Oğuzoğlu, T. Ç., Rosati, S., Reina, R., Bertolotti, L., & Burgu, I. (2013). First molecular characterization of visna/maedi viruses from naturally infected sheep in Turkey. Archives of virology158(3), 559-570.

Pépin, M., Vitu, C., Russo, P., Mornex, J. F., & Peterhans, E. (1998). Maedi-visna virus infection in sheep: a review. Veterinary research29(3-4), 341-367.

Pérez, M., Biescas, E., De Andrés, X., Leginagoikoa, I., Salazar, E., Berriatua, E., & Luján, L. (2010). Visna/maedi virus serology in sheep: Survey, risk factors and implementation of a successful control programme in Aragón (Spain). The Veterinary Journal186(2), 221-225.

Pérez, M., Biescas, E., Reina, R., Glaria, I., Marín, B., Marquina, A.,  & Luján, L. (2015). Small Ruminant Lentivirus–Induced Arthritis: Clinicopathologic Findings in Sheep Infected by a Highly Replicative SRLV B2 Genotype. Veterinary pathology52(1), 132-139.

Peterhans, E., Greenland, T., Badiola, J., Harkiss, G., Bertoni, G., Amorena, B., & Pépin, M. (2004). Routes of transmission and consequences of small ruminant lentiviruses (SRLVs) infection and eradication schemes. Veterinary research35(3), 257-274.

Peters, P. J., Marston, B. J., Weidle, P. J., & Brooks, J. T. (2013). Human Immunodeficiency Virus Infection. In Hunter’s Tropical Medicine and Emerging Infectious Disease (pp. 217-247). WB Saunders.

Pettit, S. C., Everitt, L. E., Choudhury, S., Dunn, B. M., & Kaplan, A. H. (2004). Initial cleavage of the human immunodeficiency virus type 1 GagPol precursor by its activated protease occurs by an intramolecular mechanism. Journal of virology78(16), 8477-8485.

Pétursson, G., Turelli, P., Matthíasdóttir, S., Georgsson, G., Andrésson, Ó. S., Torsteinsdóttir, S., & Quérat, G. (1998). Visna virus dUTPase is dispensable for neuropathogenicity. Journal of virology72(2), 1657-1661.

Ploumi, K., Christodoulou, V., Vainas, E., Lymberopoulos, A., Xioufis, A., Giouzeljiannis, A., & Ap Dewi, I. (2001). Effect of maedi-visna virus infection on milk production in dairy sheep in Greece. The Veterinary Record149(17), 526-527.

 Potarniche, A. V., Cerbu, C. G., Czopowicz, M., Szalus-Jordanow, O., Kaba, J., & Spinu, M. (2020). The epidemiological background of small ruminant lentivirus infection in goats from Romania. Veterinary World13(7), 1344.

Preziuso, S., Sanna, E., Sanna, M. P., Loddo, C., Cerri, D., Taccini, E., … & Rossi, G. (2003). Association of Maedi Visna virus with Brucella ovis infection in rams. European Journal of Histochemistry47(2), 151-158.

Pritchard, G. C. and Dawson, M. (2000). Maedi–Visna. In: Martin,W.B., Aitken, I.D. (Eds.), Diseases of Sheep, 3rd ed. Blackwell, pp:187–191.

Radostits O. M.; Gay, C. C.; Blood, D. C. and Hinchcliff, K. W. (2017). Veterinary Medicine. 17th edition, Saunders co., London, 1362-1366pp.

Reina, R., Berriatua, E., Luján, L., Juste, R., Sánchez, A., de Andrés, D., & Amorena, B. (2009). Prevention strategies against small ruminant lentiviruses: an update. The Veterinary Journal182(1), 31-37.

Robertson, W. (1904). Jagziekte or chronic catarrhal pneumonia (sheep). Journal of Comparative Pathology and Therapeutics17, 221-224.

Sakhaee, E., & Khalili, M. (2010). Serological study of Maedi-Visna virus among sheep flocks in Kerman province of Iran.

Saltarelli, M. J., Schoborg, R., Gdovin, S. L., & Clements, J. E. (1993). The CAEV tat gene trans-activates the viral LTR and is necessary for efficient viral replication. Virology197(1), 35-44.

Sanjosé, L., Pinczowski, P., Crespo, H., Pérez, M., Glaria, I., Gimeno, M., & Reina, R. (2015). Diagnosing infection with small ruminant lentiviruses of genotypes A and B by combining synthetic peptides in ELISA. The Veterinary Journal204(1), 88-93.

Sargan, D. R., Bennet, I. D., Cousens, C., Roy, D. J., Blacklaws, B. A., Dalziel, R. G., … & McConnell, I. (1991). Nucleotide sequence of EV1, a British isolate of maedi-visna virus. Journal of General Virology72(8), 1893-1903.

Sheehy, A. M., Gaddis, N. C., Choi, J. D., & Malim, M. H. (2002). Isolation of a human gene that inhibits HIV-1 infection and is suppressed by the viral Vif protein. Nature418(6898), 646-650.

Sigurdardóttir, B., & Thormar, H. (1964). Isolation of a viral agent from the lungs of sheep affected with maedi. The Journal of infectious diseases, 55-60.

Sigurdsson, B., Pálsson, P. A., & van Bogaert, L. (1962). Pathology of visna. Acta Neuropathologica1(4), 343-362.

Sihvonen, L., Nuotio, L., Rikula, U., Hirvelä-Koski, V., & Kokkonen, U. M. (2000). Preventing the spread of maedi–visna in sheep through a voluntary control programme in Finland. Preventive veterinary medicine47(3), 213-220.

Simon, J. H., Gaddis, N. C., Fouchier, R. A., & Malim, M. H. (1998). Evidence for a newly discovered cellular anti-HIV-1 phenotype. Nature medicine4(12), 1397-1400.

Snowder, G. D., Gates, N. L., Glimp, H. A., & Gorham, J. R. (1990). Prevalence and effect of subclinical ovine progressive pneumonia virus infection on ewe wool and lamb production. Journal of the American Veterinary Medical Association197(4), 475-479.

Straub, O. C. (2004). Maedi–Visna virus infection in sheep. History and present knowledge. Comparative immunology, microbiology and infectious diseases27(1), 1-5.

Tabet, E., Tlaige, R., El Hage, J., & Abi-Rizk, A. (2017). The occurrence of Maedi-Visna virus (MVV) in Lebanon. Rev. Sci. Tech. Off. Int. Epiz36(3), 2.

Tan, M. N., & Alkan, F. (2002). Seroepidemiological investigation of maedi-visna infection in Turkey and virus isolation attempts. Veterinary Journal of Ankara University (Turkey).

téphanie Villet, S., Faure, C., Bouzar, B. A., Morin, T., érard Verdier, G., Chebloune, Y., & Legras, C. (2003). Lack of trans-activation function for Maedi Visna virus and Caprine arthritis encephalitis virus Tat proteins. Virology307(2), 317-327.

Thormar, H. (2013). The origin of lentivirus research: Maedi-visna virus. Current HIV research11(1), 2-9.

Tiley, L. S., & Cullen, B. R. (1992). Structural and functional analysis of the visna virus Rev-response element. Journal of virology66(6), 3609-3615.

 

Tolari, F. (2000). Maedi visna ovina: eziologia, diagnosi, prevenzione e risanamento.

Turner, B. G., & Summers, M. F. (1999). Structural biology of HIV. Journal of molecular biology285(1), 1-32.

Villoria, M., Leginagoikoa, I., Luján, L., Pérez, M., Salazar, E., Berriatua, E., & Minguijón, E. (2013). Detection of small ruminant lentivirus in environmental samples of air and water. Small Ruminant Research110(2-3), 155-160.

Watt, N., Scott, P., & Collie, D. (1994). Maedi‐visna virus infection in practice. In Practice16(5), 239-247.

York, D. F., & Querat, G. (2003). A history of ovine pulmonary adenocarcinoma (jaagsiekte) and experiments leading to the deduction of the JSRV nucleotide sequence. In Jaagsiekte Sheep Retrovirus and Lung Cancer (pp. 1-23). Springer, Berlin, Heidelberg.

Yu, X., Yu, Y., Liu, B., Luo, K., Kong, W., Mao, P., & Yu, X. F. (2003). Induction of APOBEC3G ubiquitination and degradation by an HIV-1 Vif-Cul5-SCF complex. Science302(5647), 1056-1060.

Zanoni, R., Pauli, U., & Peterhans, E. (1990). Detection of caprine arthritis-encephalitis-and maedi-visna viruses using the polymerase chain reaction. Experientia46(3), 316-319.

Zhang, Z., Watt, N. J., Hopkins, J., Harkiss, G., & Woodall, C. J. (2000). Quantitative analysis of maedi-visna virus DNA load in peripheral blood monocytes and alveolar macrophages. Journal of virological methods86(1), 13-20.

License                  Article Metadata

This work is licensed under a Creative Commons Attribution 4.0 International License.