Shaifali Goyal¹, Sandeep Bagri¹, Anshul Bishnoi¹, Sunita Jhajhriya¹, Sanjay Kumar¹, Debashis Paul¹ and Suman Dutta²
¹ICAR-Central Institute for Cotton Research, Regional Station, Sirsa, India
²Ramakrishna Mission Vivekananda Educational and Research Institute, Kolkata, India
Received: 11 Nov, 2024/ Revised: 15 Dec, 2024/Accepted: 28 Dec, 2024
Abstract
Growing evidence points to microplastics as a serious environmental contaminant that affects terrestrial food chains and plants. Their presence in the soil can change its composition, influencing its porosity, water retention, and microbial activity, which can lower fertility and impede plant development. Microplastics can hinder the growth of both roots and shoots, as well as hinder the development of roots and seed germination rates. Furthermore, they have the ability to concentrate and absorb dangerous contaminants like pesticides and heavy metals, which can be absorbed by the plants and result in phytotoxicity and other health problems. Additionally, microplastics interrupt the cycle of nutrients by interfering with ability of organic matter to decompose. Microplastics can be consumed by soil-dwelling species in the terrestrial food chain, such as nematodes, earthworms, and insects. This can cause physical obstructions, decreased eating, and problems with development and reproduction. The ecosystem may experience a domino effect if these creatures disappear since they are essential to the health of the soil and the cycling of nutrients. As microplastics and their related poisons move up the food chain and perhaps reach higher trophic levels, such as birds and mammals, they have the potential to bioaccumulate and biomagnify. By direct consumption or contamination of pollen and nectar, microplastics can harm pollinators like bees and reduce their pollination effectiveness, which in turn affects agricultural yields and plant reproduction. In the end, eating infected plants or animals can expose humans to microplastics, which poses risks for toxicity, inflammation, and the spread of dangerous substances. With an emphasis on long-term pollution effects and techniques to identify and measure microplastics in soil and biota, ongoing research attempts to clarify the routes and processes of microplastic impacts on terrestrial ecosystems. Enhancing waste management, cutting back on single-use plastics, creating biodegradable substitutes, and raising public awareness of plastic pollution are examples of mitigation techniques. To preserve ecosystem health and guarantee food security, it is imperative to address the effects of microplastics on plants and terrestrial food chains.
Keywords: Microplastics, Soil Health, Plant Growth, Terrestrial Food Chain, Bioaccumulation, Pollutants, Ecosystem Impact.
References
Aralappanavar, V. K., Mukhopadhyay, R., Yu, Y., Liu, J., Bhatnagar, A., Praveena, S. M., & Sarkar, B. (2024). Effects of microplastics on soil microorganisms and microbial functions in nutrients and carbon cycling–A review. Science of the Total Environment, 171435.
Berman, D. S., Henrici, A. C., Sumida, S. S., & Martens, T. (2023). Origin of the modern terrestrial vertebrate food chain. Annals of Carnegie Museum, 88(3), 193-201. doi: 10.2992/007.088.0302
Bianco, V., Memmolo, P., Merola, F., Carcagni, P., Paturzo, M., Distante, C., & Ferraro, P. (2019, June). Characterization of microplastics by holographic features for automatic detection in heterogeneous samples. In Optical Methods for Inspection, Characterization, and Imaging of Biomaterials IV (Vol. 11060, pp. 192-197). SPIE. doi: 10.1117/12.2527496
Bourdeau, V. (2010). Of humans, natures and human nature in the modern food chain (Doctoral dissertation, Concordia University).
Cai, L., Wang, J., Peng, J., Tan, Z., Zhan, Z., Tan, X., & Chen, Q. (2017). Characteristic of microplastics in the atmospheric fallout from Dongguan city, China: preliminary research and first evidence. Environmental Science and Pollution Research, 24, 24928-24935. . doi: 10.1007/s11356-017-0116-x
Caldwell, C. D., & Wang, S. (2020). Linking Agroecosystems to Food Systems. Introduction to Agroecology, 61-68. doi: 10.1007/978-981-15-8836-5_5
Campanale, C., Massarelli, C., Savino, I., Locaputo, V., & Uricchio, V. F. (2020). A detailed review study on potential effects of microplastics and additives of concern on human health. International Journal of Environmental Research and Public Health, 17(4), 1212. doi: 10.3390/ijerph17041212
Cao, Y., Zhao, M., Ma, X., Song, Y., Zuo, S., Li, H., & Deng, W. (2021). A critical review on the interactions of microplastics with heavy metals: Mechanism and their combined effect on organisms and humans. Science of the Total Environment, 788, 147620. doi:10.1016/j.scitotenv.2021.147620
Chain, Ni. (2024). Influence of Micro and Nanoplastics in Modern Food Chain: An Inevitable Intervention. Futuristic Trends in Agriculture Engineering & Food Sciences Volume 3, Book 6, Chapter 4 doi: 10.58532/v3bcag6p1ch4
Chen, H., Wang, Y., Sun, X., Peng, Y., & Xiao, L. (2020). Mixing effect of polylactic acid microplastic and straw residue on soil property and ecological function. Chemosphere, 243, 125271.
Chen, Y. L., Yang, L., Liang, X., Lu, S., Zhang, Y. Q., Han, Z. C., Gao, B., & Sun, K. (2024). Effects of microplastics on soil carbon pool and terrestrial plant performance. Carbon Research. doi: 10.1007/s44246-024-00124-1
Chia, R. W., Lee, J. Y., Kim, H., & Jang, J. (2021). Microplastic pollution in soil and groundwater: a review. Environmental Chemistry Letters, 19(6), 4211-4224. doi: 10.1007/s10311-021-01297-6
Cverenkárová, K., Valachovičová, M., Mackuľak, T., Žemlička, L., & Bírošová, L. (2021). Microplastics in the food chain. Life, 11(12), 1349.
De-la-Torre, G. E. (2020). Microplastics: An emerging threat to food security and human health. Journal of Food Science and Technology, 57(4), 1601–1608. doi: 10.1007/s11483-020-01877-5
EFSA Panel on Contaminants in the Food Chain (CONTAM). (2016). Presence of microplastics and nanoplastics in food, with particular focus on seafood. EFSA Journal, 14(6), 4501. doi: 10.2903/j.efsa.2016.4501
Enyoh, C. E., Verla, A. W., & Verla, E. N. (2020). Novel coronavirus (SARS-CoV-2) and airborne microplastics. Journal of Materials and Environmental Science, 11(8), 1454–1461. doi: 10.26872/jmes.2020.11.8.1454
Fadare, O. O., & Okoffo, E. D. (2020). COVID-19 face masks: A potential source of microplastic fibers in the environment. Science of the Total Environment, 737, 140279. doi: 10.1016/j.scitotenv.2020.140279
Feng, X., Wang, Q., Sun, Y., Zhang, S., & Wang, F. (2022). Microplastics change soil properties, heavy metal availability and bacterial community in a Pb-Zn-contaminated soil. Journal of Hazardous materials, 424, 127364.
Fox, S., Stefánsson, H., Peternell, M., Zlotskiy, E., Ásbjörnsson, E. J., Sturkell, E., & Konrad-Schmolke, M. (2024). Physical characteristics of microplastic particles and potential for global atmospheric transport: A meta-analysis. Environmental Pollution, 342, 122938. doi: 10.1016/j.envpol.2023.122938
Garcia-Vazquez, E., & Garcia-Ael, C. (2021). The invisible enemy: Public knowledge of microplastics is needed to face the current microplastics crisis. Sustainable Production and Consumption, 28, 1076–1089. doi: 10.1016/j.spc.2021.04.007
Gary, O., Lara-Topete, J., Castanier-Rivas, J. D., Bahena-Osorio, M. F., Krause, S., Larsen, J., Loge, F. J., Mahlknecht, J., Gradilla‐Hernández, M., & González‐López, M. E. (2024). Compounding one problem with another? A look at biodegradable microplastics. Science of the Total Environment, 864, 173735. doi: 10.1016/j.scitotenv.2024.173735
Guerzoni, M. E. (2010). Human food chain and microorganisms: a case of co-evolution. Frontiers in microbiology, 1, 106. doi: 10.3389/FMICB.2010.00106
Hale, K. R., Curlis, J. D., Auteri, G. G., Bishop, S., French, R. L., Jones, L. E., & Valdovinos, F. S. (2024). A highly resolved network reveals the role of terrestrial herbivory in structuring aboveground food webs. Philosophical Transactions B, 379(1909), 20230180. doi: 10.1101/2023.10.05.560934
Hodson, M. E., Duffus-Hodson, C. A., Clark, A., Prendergast-Miller, M. T., & Thorpe, K. L. (2017). Plastic bag derived-microplastics as a vector for metal exposure in terrestrial invertebrates. Environmental Science & Technology, 51(8), 4714-4721. doi:10.1021/acs.est.7b00635
Hövelmann, L., Schaffner, A., Christen, O., & Reinicke, F. (2006). Sustainable agriculture and food chain: Status quo and perspectives for the potato food chain. In Potato developments in a changing Europe (pp. 67-77). Wageningen Academic. doi: 10.3920/9789086865826_009
Huang, Y., Zhao, Y., Wang, J., et al. (2019). LDPE microplastic films alter microbial community composition and enzymatic activities in soil. Environmental Pollution, 254, 112983. doi: 10.1016/j.envpol.2019.112983
Humphrey, S., Francis-Dominic, M., & Merit, O. (2024). Green chemistry strategies for mitigating microplastic pollution in aquatic environments. Asian Journal of Environmental Research, 1(2), 67. doi: 10.69930/ajer.v1i2.67
Ingraffia, R., Amato, G., Bagarello, V., Carollo, F. G., Giambalvo, D., Iovino, M., & Frenda, A. S. (2021). Polyester microplastic fibers affect soil physical properties and erosion as a function of soil type. Soil Discussions, 2021, 1-22. doi: 10.5194/soil-8-421-2022.
Ingraffia, R., Amato, G., Bagarello, V., Carollo, F. G., Giambalvo, D., Iovino, M., … & Frenda, A. S. (2021). Polyester microplastic fibers affect soil physical properties and erosion as a function of soil type. Soil Discussions, 2021, 1-22. doi: 10.5194/soil-8-421-2022
Ingraffia, R., Amato, G., Iovino, M., Rillig, M. C., Giambalvo, D., & Frenda, A. S. (2022). Polyester microplastic fibers in soil increase nitrogen loss via leaching and decrease plant biomass production and N uptake. Environmental Research Letters, 17(5), 054012.
Islam, M. S., Mondal, S., Angon, P. B., & Jalil, M. A. (2023). Accumulation of microplastics in agroecosystems and its effects on terrestrial plants: A short review. Current Applied Science and Technology, 10-55003.
Iswahyudi, I., Widodo, W., Warkoyo, W., Sutanto, A., Putra Garfansa, M., Alvina, W., Mujiyanti, W., Shoimus, M., & Sholeh, M. (2024). Investigating the impact of microplastics type of polyethylene, polypropylene, and polystyrene on seed germination and early growth of rice plants. Environmental Quality Management. doi: 10.1002/tqem.22287
Jansson, S. L., & Persson, J. (1982). Mineralization and immobilization of soil nitrogen. In F. J. Stevenson (Ed.), Nitrogen in Agricultural Soils (pp. 229–252). American Society of Agronomy.
Javier, L. (2023). Growing Concerns: The Interactive Effects of Soil Copper and Microplastics on Soybeans.
Karbalaei, S., Hanachi, P., Walker, T. R., & Cole, M. (2018). Occurrence, sources, human health impacts, and mitigation of microplastic pollution. Environmental Science and Pollution Research, 25, 36046–36063. doi: 10.1007/s11356-018-1956-0
Knowles, R. (1982). Denitrification. Microbiological Reviews, 46(1), 43–70. doi:10.1128/mr.46.1.43-70.1982
Kontrick, A. V. (2018). Microplastics and human health: Our great future to think about now. Journal of Medical Toxicology, 14(2), 117–119. doi: 10.1007/s13181-018-0700-9
Kumuduni, N., Palansooriya, W., & An, Z. (2024). Microplastics affect the ecological stoichiometry of plant, soil and microbes in a greenhouse vegetable system. Science of The Total Environment. doi: 10.1016/j.scitotenv.2024.171602
Laskar, N., & Kumar, U. (2019). Plastics and microplastics: A threat to environment. Environmental Technology & Innovation, 14, 100352. doi: 10.1016/j.eti.2019.100352
Lavelle, P., Dugdale, R., Scholes, R., et al. (2005). Nutrient cycling. In Ecosystems and Human Well-Being: Current State and Trends: Findings of the Condition and Trends Working Group (pp. xx-xx). Island Press.
Leifheit, E. F., Lehmann, A., & Rillig, M. C. (2021). Potential effects of microplastic on arbuscular mycorrhizal fungi. Frontiers in Plant Science, 12, 626709.
Li, K., Xiu, X., & Hao, W. (2023). Microplastics in soils: Production, behavior process, impact on soil organisms, and related toxicity mechanisms. Chemosphere. doi: 10.1016/j.chemosphere.2023.141060
Li, M., Liu, Y., Xu, G., Wang, Y., & Yu, Y. (2021). Impacts of polyethylene microplastics on bioavailability and toxicity of metals in soil. Science of the Total Environment, 760, 144037. doi: 10.1016/j.scitotenv.2020.144037
Li, Y., Wang, X., Wang, Y., Sun, Y., Xia, S., & Zhao, J. (2022). Effect of biofilm colonization on Pb (II) adsorption onto poly (butylene succinate) microplastic during its biodegradation. Science of the Total Environment, 833, 155251. doi:10.1016/j.scitotenv.2022.155251
Liang, Y., Lehmann, A., Yang, G., Leifheit, E. F., & Rillig, M. C. (2021). Effects of microplastic fibers on soil aggregation and enzyme activities are organic matter dependent. Frontiers in Environmental Science, 9, 650155. doi: 10.3389/fenvs.2021.650155
Liaqat, S., Hussain, M., & Riaz, J. (2024). Entry of the Microplastics in Food Chain and Food Web. In Microplastic Pollution (pp. 289-306). Singapore: Springer Nature Singapore. doi: 10.1007/978-981-99-8357-5_17
Liava, V., & Golia, E. E. (2024). Effect of microplastics used in agronomic practices on agricultural soil properties and plant functions: Potential contribution to the circular economy of rural areas. Haikibutsu Gakkaishi. doi: 10.1177/0734242×241234234
Liu, G., Zhu, Z., Yang, Y., Sun, Y., Yu, F., & Ma, J. (2019). Sorption behavior and mechanism of hydrophilic organic chemicals to virgin and aged microplastics in freshwater and seawater. Environmental Pollution, 246, 26-33.
Liu, H., Yang, X., Liu, G., Liang, C., Xue, S., Chen, H., & Geissen, V. (2017). Response of soil dissolved organic matter to microplastic addition in Chinese loess soil. Chemosphere, 185, 907-917.
Liu, J., Han, S., Wang, P., Zhang, X., Zhang, J., Hou, L., Zhang, Y., Wang, Y., Li, L., & Lin, Y. (2024). Soil microorganisms play an important role in the detrimental impact of biodegradable microplastics on plants. Science of The Total Environment. doi: 10.1016/j.scitotenv.2024.172933
Liu, Q., & Schauer, J. (2021). Airborne microplastics from waste as a transmission vector for COVID-19. Aerosol and Air Quality Research, 21(6), 200439. doi: 10.4209/aaqr.2020.10.0562
Liu, X., Fang, L., Gardea-Torresdey, J. L., Zhou, X., & Yan, B. (2024). Microplastic-derived dissolved organic matter: Generation, characterization, and environmental behaviors. Science of The Total Environment, 174811. doi: 10.1016/j.scitotenv.2024.174811
Lusher, A. L., Hurley, R., Arp, H. P., Booth, A. M., Bråte, I. L., Gabrielsen, G. W., Gomiero, A., Gomes, T., Grøsvik, B. E., Green, N., & Haave, M. (2021). Moving forward in microplastic research: A Norwegian perspective. Environment International, 157, 106794. doi: 10.1016/j.envint.2021.106794
McCormack, M. L., Dickie, I. A., Eissenstat, D. M., Fahey, T. J., Fernandez, C. W., Guo, D., & Zadworny, M. (2015). Redefining fine roots improves understanding of below‐ground contributions to terrestrial biosphere processes. New Phytologist, 207(3), 505-518. doi: 10.1111/nph.13363
McNeill, A., & Unkovich, M. (2007). The nitrogen cycle in terrestrial ecosystems. In P. Marschner & Z. Rengel (Eds.), Nutrient cycling in terrestrial ecosystems (pp. 37-64). Springer. doi:10.1007/978-3-540-68027-7_2
Meng, J., Xu, B., Liu, F., Li, W., Sy, N., Zhou, X., & Yan, B. (2021). Effects of chemical and natural ageing on the release of potentially toxic metal additives in commercial PVC microplastics. Chemosphere, 283, 131274. doi: 10.1016/j.chemosphere.2021.131274
Merlin, N., Issac, T., & Balasubramanian, K. (2021). Effect of microplastics in water and aquatic systems. Environmental Science and Pollution Research. doi: 10.1007/s11356-021-13184-2
Prata, J. C., da Costa, J. P., Lopes, I., Duarte, A. C., & Rocha-Santos, T. (2020). Environmental exposure to microplastics: An overview on possible human health effects. Science of the Total Environment, 702, 134455. doi: 10.1016/j.scitotenv.2019.134455
Preeti, P., Pallavi, S., & Raut, S. (2024). Microplastics in terrestrial ecosystems: Degradation strategies for its mitigation. In Environmental Science and Engineering (pp. 1–17). doi: 10.1007/978-3-031-50840-0_8
Qiu, W. (2024). Impact of microplastics on microbial-mediated soil sulfur transformations in flooded conditions. Journal of Hazardous Materials. doi: 10.1016/j.jhazmat.2024.133857
Qu, Q., Zhang, Z., Peijnenburg, W. J. G. M., Liu, W., Lu, T., Hu, B., & Qian, H. (2020). Rhizosphere microbiome assembly and its impact on plant growth. Journal of agricultural and food chemistry, 68(18), 5024-5038.
Ragusa, A., Svelato, A., Santacroce, C., Catalano, P., Notarstefano, V., Carnevali, O., Papa, F., Rongioletti, M. C. A., Baiocco, F., Draghi, S., et al. (2021). Plasticenta: First evidence of microplastics in human placenta. Environmental International, 146, 106274. doi: 10.1016/j.envint.2020.106274
Rillig, M. C., & Lehmann, A. (2020). Microplastic in terrestrial ecosystems. Science, 368, 1430–1431.
Rillig, M. C., Leifheit, E., & Lehmann, J. (2021). Microplastic effects on carbon cycling processes in soils. PLoS Biology, 19(5), e3001063. doi:10.1371/journal.pbio.3001063
Rist, S., Carney Almroth, B., Hartmann, N. B., & Karlsson, T. M. (2018). A critical perspective on early communications concerning human health aspects of microplastics. Science of the Total Environment, 626, 720–726. doi: 10.1016/j.scitotenv.2018.01.013
Roshmon, T., & Mathew, S. (2024). Plastic contamination in aquatic ecosystems: A fisheries perspective. Asian Journal of Water, Environment and Pollution. doi: 10.3233/ajw240028
Sharma, P. (2024). Microplastic Contamination in Food Processing: Role of Packaging Materials. Food Science and Engineering, 271-287. doi: 10.37256/fse.5220244519
Sharma, S., & Chatterjee, S. (2017). Microplastic pollution, a threat to marine ecosystem and human health: A short review. Environmental Science and Pollution Research, 24, 21530–21547. doi: 10.1007/s11356-017-0390-5
Shukla, A. K., Behera, S. K., Satyanarayana, T., & Majumdar, K. (2019). Importance of micronutrients in Indian agriculture. Better Crops South Asia, 11(1), 6-10.
Singh, S., Sharma, S., Yadav, R., & Singh, A. N. (2023). Entry of microplastics into agroecosystems: A serious threat to food security and human health. Microplastics in the Ecosphere: Air, Water, Soil, and Food, 201-218.
Smith, M., Love, D. C., Rochman, C. M., & Neff, R. A. (2018). Microplastics in seafood and the implications for human health. Current Environmental Health Reports, 5(3), 375–386. doi: 10.1007/s40572-018-0192-8
Sunny, D., Sharma, C., Kumar, A., Pathak, P., & Purohit, S. D. (2023). Microplastics in aquatic and food ecosystems: Remediation coupled with circular economy solutions to create resource from waste. Sustainability, 15(19), 14184. doi: 10.3390/su151914184
Tang, S., Lin, L., Wang, X., Yu, A., & Sun, X. (2021). Interfacial interactions between collected nylon microplastics and three divalent metal ions (Cu (II), Ni (II), Zn (II)) in aqueous solutions. Journal of Hazardous Materials, 403, 123548.
Vanisree, C. R., Sankhla, M. S., Singh, P., Jadhav, E. B., Verma, R. K., Awasthi, K. K., & Nagar, V. (2022). Heavy metal contamination of food crops: Transportation via food chain, human consumption, toxicity and management strategies. In Environmental Impact and Remediation of Heavy Metals. IntechOpen. doi: 10.5772/intechopen.101938
Wang, F., Wang, Q., Adams, C. A., Sun, Y., & Zhang, S. (2022). Effects of microplastics on soil properties: current knowledge and future perspectives. Journal of Hazardous Materials, 424, 127531.
Wang, H., Huang, W., Zhang, Y., Wang, C., & Jiang, H. (2021a). Unique metalloid uptake on microplastics: The interaction between boron and microplastics in the aquatic environment. Science of The Total Environment, 800, 149668. doi: 10.1016/j.scitotenv.2021.149668
Wen, X., Yin, L., Zhou, Z., Kang, Z., Sun, Q., Zhang, Y., & Jiang, C. (2022). Microplastics can affect soil properties and chemical speciation of metals in yellow-brown soil. Ecotoxicology and Environmental Safety, 243, 113958.
Xiao, M., Shahbaz, M., Liang, Y., Yang, J., Wang, S., Chadwicka, D. R., & Ge, T. (2021). Effect of microplastics on organic matter decomposition in paddy soil amended with crop residues and labile C: A three-source-partitioning study. Journal of Hazardous Materials, 416, 126221.
Yan, Y., Chen, Z., Zhu, F., Zhu, C., Wang, C., & Gu, C. (2021). Effect of polyvinyl chloride microplastics on bacterial community and nutrient status in two agricultural soils. Bulletin of Environmental Contamination and Toxicology, 107, 602-609.
Yingxue, Y., & Flury, M. (2024). Unlocking the potentials of biodegradable plastics with proper management and evaluation at environmentally relevant concentrations. Nature Sustainability. doi: 10.1038/s44296-024-00012-0
Yu, H., Hou, J., Dang, Q., Cui, D., Xi, B., & Tan, W. (2020). Decrease in bioavailability of soil heavy metals caused by the presence of microplastics varies across aggregate levels. Journal of hazardous materials, 395, 122690.
Yu, H., Qi, W., Cao, X., Hu, J., Li, Y., Peng, J., & Qu, J. (2021). Microplastic residues in wetland ecosystems: do they truly threaten the plant-microbe-soil system?. Environment International, 156, 106708.
Yu, Y., Battu, A. K., Varga, T., Denny, A. C., Zahid, T. M., Chowdhury, I., & Flury, M. (2023). Minimal impacts of microplastics on soil physical properties under environmentally relevant concentrations. Environmental Science & Technology, 57(13), 5296-5304. doi: 10.1021/acs.est.2c09822
Zang, H., Zhou, J., Marshall, M. R., Chadwick, D. R., Wen, Y., & Jones, D. L. (2020). Microplastics in the agroecosystem: are they an emerging threat to the plant-soil system?. Soil Biology and Biochemistry, 148, 107926.
Zhang, G. S., Zhang, F. X., & Li, X. T. (2019). Effects of polyester microfibers on soil physical properties: Perception from a field and a pot experiment. Science of the Total Environment, 670, 1-7. doi: 10.1016/j.scitotenv.2019.03.149.
Zhang, Q., Guo, W., Wang, B., Feng, Y., Han, L., Zhang, C., & Feng, Y. (2023). Influences of microplastics types and size on soil properties and cadmium adsorption in paddy soil after one rice season. Resources, Environment and Sustainability, 11, 100102. doi: 10.1016/j.resenv.2022.100102
Zhou, J., Gui, H., Banfield, C. C., Wen, Y., Zang, H., Dippold, M. A., & Jones, D. L. (2021). The microplastisphere: biodegradable microplastics addition alters soil microbial community structure and function. Soil Biology and Biochemistry, 156, 108211.
Zhou, J., Wen, Y., Marshall, M. R., Zhao, J., Gui, H., Yang, Y., & Zang, H. (2021). Microplastics as an emerging threat to plant and soil health in agroecosystems. Science of the Total Environment, 787, 147444.
Zhou, J., Wen, Y., Marshall, M. R., Zhao, J., Gui, H., Yang, Y., & Zang, H. (2021). Microplastics as an emerging threat to plant and soil health in agroecosystems. Science of the Total Environment, 787, 147444.
Zhou, J., Zang, H., Loeppmann, S., Gube, M., Kuzyakov, Y., & Pausch, J. (2020). Arbuscular mycorrhiza enhances rhizodeposition and reduces the rhizosphere priming effect on the decomposition of soil organic matter. Soil Biology and Biochemistry, 140, 107641.
How to cite this article
Goyal, S., Bagri, S., Bishnoi, A., Jhajhriya, S., Kumar, S., Paul, D. and Dutta, S. (2024). A comprehensive review on Microplastic impacts on plant and terrestrial food chain. Chemical and Environmental Science Archives, Vol. 4(4), 18-28. https://doi.org/10.47587/CESA.2024.4401.
Licence Article Metadata
This work is licensed under a Creative Commons Attribution 4.0 International License.