Onkar Bajirao Patil*, Sourabh Pandurang Bhosale, Rutuj Mahesh Kabade, Popat Sonappa Kumbhar, Arehalli Sidramappa Manjappa and John Intru Disouza

 Tatyasaheb Kore College of Pharmacy, Warananagar, Tal: Panhala, Dist. Kolhapur, Maharashtra-416113, India.

*Corresponding author: obpatil.tkcp@gmail.com

Abstract

 In recent decades, polymer materials have received more attention as possible biomaterials for a variety of medical purposes. Due to their numerous uses in the environment and the medicinal field, biodegradable polymers have sparked a new area of intense study. Because of their biocompatibility, biodegradability, flexibility, and low side effects, biodegradable polymers have become more popular in biomedical applications. Polymers are resistant to biodegradation because of their hydrophobicity, large molecular weight, chemical, and structural components. The abiotic and biotic mechanisms of degradation, as well as numerous methods that may be used to improve biodegradation, are covered in this study. The primary types of polymers are briefly reviewed in terms of characteristics and biodegradability, as well as recognized degradation mechanisms and their benefits and drawbacks, as well as variables influencing biodegradation. Even we discussed the applications and role of biodegradable polymers in drug delivery systems.

 Keywords   Biodegradable polymers, chemical structure, classification, pharmaceutical applications.

How to cite this article:

Patil, O.B.,  Bhosale, S.P., Kabade, R.M., Kumbhar, P.S. , Manjappa, A.S., Disouza, J.I. (2021). Biodegradable polymer: basics, approaches to improve biodegradability and its pharmaceutical applications. Chemical and Environmental Science Archives, Vol. 1 (1), 5-11

References

Amass, W., Amass, A., & Tighe, B. (1998). A review of biodegradable polymers: uses, current developments in the synthesis and characterization of biodegradable polyesters, blends of biodegradable polymers and recent advances in biodegradation studies. Polymer international47(2), 89-144.

Anhorn, M. G., Wagner, S., Kreuter, J., Langer, K., & von Briesen, H. (2008). Specific targeting of HER2 overexpressing breast cancer cells with doxorubicin-loaded trastuzumab-modified human serum albumin nanoparticles. Bioconjugate chemistry19(12), 2321-2331.

Antoniraj, M. G., Ayyavu, M., Henry, L. J. K., Nageshwar Rao, G., Natesan, S., Sundar, D. S., & Kandasamy, R. (2018). Cytocompatible chitosan-graft-mPEG-based 5-fluorouracil-loaded polymeric nanoparticles for tumor-targeted drug delivery. Drug development and industrial pharmacy44(3), 365-376.

Berkland, C., King, M., Cox, A., Kim, K. K., & Pack, D. W. (2002). Precise control of PLG microsphere size provides enhanced control of drug release rate. Journal of controlled release82(1), 137-147.

Bhanja, S., Sudhakar, M., Neelima, V., & Roy, H. (2013). Development and evaluation of mucoadhesive microspheres of Irbesartan. Int J Pharm Res Health Sci1, 17-26.

Charman, W. N., Chan, H. K., Finnin, B. C., & Charman, S. A. (1999). Drug delivery: a key factor in realising the full therapeutic potential of drugs. Drug Development Research46(3‐4), 316-327.

Cirri, M., Mennini, N., Maestrelli, F., Mura, P., Ghelardini, C., & Mannelli, L. D. C. (2017). Development and in vivo evaluation of an innovative “Hydrochlorothiazide-in Cyclodextrins-in Solid Lipid Nanoparticles” formulation with sustained release and enhanced oral bioavailability for potential hypertension treatment in pediatrics. International journal of pharmaceutics521(1-2), 73-83.

Das, S., & Subuddhi, U. (2015). pH-Responsive guar gum hydrogels for controlled delivery of dexamethasone to the intestine. International journal of biological macromolecules79, 856-863.

Dhaliwal, K. and Dosanjh, P. (2018). ‘Biodegradable Polymers and their Role in Drug Delivery Systems.’ Biomedical Journal of Scientific & Technical Research, 11(1):8315-8320.

Gu, J., Al-Bayati, K., & Ho, E. A. (2017). Development of antibody-modified chitosan nanoparticles for the targeted delivery of siRNA across the blood-brain barrier as a strategy for inhibiting HIV replication in astrocytes. Drug delivery and translational research7(4), 497-506.

Hatefi, A., & Amsden, B. (2002). Biodegradable injectable in situ forming drug delivery systems. Journal of Controlled Release80(1-3), 9-28.

Hayashi, T. (1994). Biodegradable polymers for biomedical uses. Progress in polymer science19(4), 663-702.

Heller, J. (1984). Biodegradable polymers in controlled drug delivery. Critical reviews in therapeutic drug carrier systems1(1), 39-90.

Jiang, Y., Lu, H., Chen, F., Callari, M., Pourgholami, M., Morris, D. L., & Stenzel, M. H. (2016). PEGylated albumin-based polyion complex micelles for protein delivery. Biomacromolecules17(3), 808-817.

Joshi, J. R., & Patel, R. P. (2012). Role of biodegradable polymers in drug delivery. Int J Curr Pharm Res4(4), 74-81.

Kabanov, A. V., Batrakova, E. V., Sriadibhatla, S., Yang, Z., Kelly, D. L., & Alakov, V. Y. (2005). Polymer genomics: shifting the gene and drug delivery paradigms. Journal of Controlled Release101(1-3), 259-271.

Kerimoglu, O., & Alarçin, E. (2012). Poly (lactic-co-glycolic acid) based drug delivery devices for tissue engineering and regenerative medicine. Ankem Derg26(2), 86-98.

Kianfar, F., Antonijevic, M., Chowdhry, B., & Boateng, J. S. (2013). Lyophilized wafers comprising carrageenan and pluronic acid for buccal drug delivery using model soluble and insoluble drugs. Colloids and Surfaces B: Biointerfaces103, 99-106.

Kim, S., Kim, J. H., Jeon, O., Kwon, I. C., & Park, K. (2009). Engineered polymers for advanced drug delivery. European Journal of Pharmaceutics and Biopharmaceutics71(3), 420-430.

Kipper, M. J., Shen, E., Determan, A., & Narasimhan, B. (2002). Design of an injectable system based on bioerodible polyanhydride microspheres for sustained drug delivery. Biomaterials23(22), 4405-4412.

Kolybaba, M., Tabil, L. G., Panigrahi, S., Crerar, W. J., Powell, T., & Wang, B. (2006). Biodegradable polymers: past, present, and future. In ASABE/CSBE North Central Intersectional Meeting (p. 1). American Society of Agricultural and Biological Engineers.

Lambert, W. J., & Peck, K. D. (1995). Development of an in situ forming biodegradable poly-lactide-coglycolide system for the controlled release of proteins. Journal of Controlled Release33(1), 189-195.

Luckachan, G. E. (2006). Novel approaches to biodegradable polymers: Synthesis and biodegradation studies (Doctoral dissertation, Chemical Sciences and Technology Division, Regional Research Laboratory (CSIR), Thiruvananthapuram.).

Malafaya, P. B., Silva, G. A., & Reis, R. L. (2007). Natural-origin polymers as carriers and scaffolds for biomolecules and cell delivery in tissue engineering applications. Adv Drug Del Rev 59 (4–5): 207–233.

Middleton, J. C. (2000). a Arthur J Tipton. Synthetic biodegradable polymers as orthopedic devices. Biomaterials21(23), 2335-2346.

Moghimi, S. M. (1998). Opsono-recognition of liposomes by tissue macrophages. International journal of pharmaceutics162(1-2), 11-18.

Phale, T., Agnihotri, J., & Khale, A. (2013). Technical advancement in biodegradable polymers and their recent patents. International Journal of Research and Development in Pharmacy & Life Sciences3(1), 808-816.

Rao, K. P. (1998). New concepts in controlled drug delivery. Pure and applied chemistry70(6), 1283-1287.

Rezwan, Q. Z. (2006). Chena, JJ Blakera & Aldo Roberto Boccaccini,“Biodegradable and bioactive porous polymer/inorganic composite scaffolds for bone tissue engineering”. Biomaterials27, 3413-3431.

Roy, H., Chakraborty, A. K., Nayak, B. S., Bhanja, S., Mishra, S. R., & Ellaiah, P. (2010). Design and in vitro evaluation of sustained release matrix tablets of complexed Nicardipine Hydrochloride. International Journal of Pharmacy and Pharmaceutical Sciences2(4), 128-132.

Roy, H., Panda, S. K., Parida, K. R., & Biswal, A. K. (2013). Formulation and In-vitro Evaluation of Matrix Controlled Lamivudine Tablets. Int J Pharma Res Health Sci1(1), 1-7.

Shaker, M. A., & Younes, H. M. (2010). Osmotic-driven release of papaverine hydrochloride from novel poly (decane-co-tricarballylate) elastomeric matrices. Therapeutic delivery1(1), 37-50.

Tritle, N. M., Haller, J. R., & Gray, S. D. (2001). Aesthetic comparison of wound closure techniques in a porcine model. The Laryngoscope111(11), 1949-1951.

Ul-Islam, M., Khan, S., Ullah, M. W., & Park, J. K. (2015). Structure, chemistry and pharmaceutical applications of biodegradable polymers. Handbook of Polymers for Pharmaceutical Technologies3, 517-540.

Williams, D. F. (2009). On the nature of biomaterials. Biomaterials30(30), 5897-5909.

Yim, Z., Zupon, M. A., & Chaudry, I. A. (1989). U.S. Patent No. 4,851,220. Washington, DC: U.S. Patent and Trademark Office.

License              Article Metadata

This work is licensed under a Creative Commons Attribution 4.0 International License.

View Details