Hassana Abubakar1,2, Yakubu Ndatsu1, Achimugu Dickson Musa1,2, Fatima Gogo Mayaki1, Salihu Abdullahi Baba1, Vincent Tochukwu Balogu3 and Cyril Ogbiko4✉
1Department of Biochemistry, Faculty of Natural Sciences, Ibrahim Badamasi Babangida University Lapai, P.M.B 11, Lapai, Niger State, Nigeria
2Trans-Saharan Disease Research Centre, Ibrahim Badamasi Babangida University Lapai, P.M.B 11, Lapai, Niger State, Nigeria
3Department of Microbiology, Faculty of Natural Sciences, Ibrahim Badamasi Babangida University Lapai, P.M.B 11, Lapai, Niger State, Nigeria
4Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Madonna University, P.M.B 05, Elele, Rivers State, Nigeria
Received: Apr 16, 2023/ Revised: May 10, 2023/ Accepted: May 11, 2023
(✉) Corresponding Author: cyrilogbiko@gmail.com
DOI: https://doi.org/10.47587/CESA.2023.3201
Abstract
The structural guided-rational design has been suggested to meet the demand for pullulanase in starch industries. Neopullulanase (EC 3.2.1.135), a pullulan hydrolase type I belonging to the alpha-amylase family that hydrolysis α -1,4-glucosidic bonds in pullulan to produce panose is one such enzyme that can be manipulated. Therefore, this study aimed at modeling three 3-dimensional structures of neopullulanase from Thermus brockianus, a thermophilic bacteria belonging to the thermus genus. The multiple sequence alignment was carried out with Clustal Omega while the domain and 3D structure of this enzyme was predicted with Pfam and four different modeling servers. Model validation was done using SAVES 06 based on the Ramachandran plot and VERIFY3D analysis. YASARA was employed to minimize the energy of the model. PyMOL software was employed to visualize and superimpose the model with the template. The conserved residues and alpha-amylase domain were identified in this enzyme. The RaptorX model was found to be the best with 93.1% residues in the most favoured region based on the Ramachandran plot. The model energy was reduced to -281707.5 kJ/mol with 95.03% of the residues having an average score of 3D-1D score >= 0.2 in the VERIFY3D analysis. TIM barrel active site fold and the three important catalytic residues; Asp329, Glu360 and Asp431 were also identified. This structure prediction will be helpful in the improvement of neopullulanase for large-scale industrial use.
Keywords: Pullulanase, Neopullulanase, Thermus Brockianus, Thermophilic Bacteria, Three-Dimensional Structure
References
Altschul, S. F., Madden, T. L., Schäffer, A. A., Zhang, J., Zhang, Z., Miller, W., & Lipman, D. J. (1997). Gapped BLAST and PSI-BLAST: a new generation of protein database search programs. Nucleic Acids Research, 25(17), 3389–3402.
Arnold, K., Bordoli, L., Kopp, J., & Schwede, T. (2006). The SWISS-MODEL workspace: a web-based environment for protein structure homology modelling. Bioinformatics, 22(2), 195–201.
Bateman, A., Coin, L., Durbin, R., Finn, R. D., Hollich, V., Griffiths-Jones, S., Khanna, A., Marshall, M., Moxon, S., Sonnhammer, E. L. L., Studholme D. J., Yeats, C. & Eddy, S. R. (2004). The Pfam protein families database. Nucleic Acids Research, 32(suppl\_1), D138–D141.
Boutet, E., Lieberherr, D., Tognolli, M., Schneider, M., Bansal, P., Bridge, A. J., Poux, S., Bougueleret, L., & Xenarios, I. (2016). UniProtKB/Swiss-Prot, the manually annotated section of the UniProt KnowledgeBase: how to use the entry view. In Plant Bioinformatics (pp. 23–54). Springer.
Bruins, M. E., Janssen, A. E. M., & Boom, R. M. (2001). Thermozymes and their applications. Applied Biochemistry and Biotechnology, 90(2), 155–186.
DeLano, W. L. (2002). Pymol: An open-source molecular graphics tool. CCP4 Newsl. Protein Crystallogr, 40(1), 82–92.
Ece, S., Evran, S., Janda, J.-O., Merkl, R., & Sterner, R. (2015). Improving thermal and detergent stability of Bacillus stearothermophilus neopullulanase by rational enzyme design. Protein Engineering, Design and Selection, 28(6), 147–151.
Eisenberg, D., Lüthy, R., & Bowie, J. U. (1997). [20] VERIFY3D: assessment of protein models with three-dimensional profiles. In Methods in enzymology (Vol. 277, pp. 396–404). Elsevier.
Guo, J., Coker, A. R., Wood, S. P., Cooper, J. B., Keegan, R. M., Ahmad, N., Muhammad, M. A., Rashid, N., & Akhtar, M. (2018). Structure and function of the type III pullulan hydrolase from Thermococcus kodakarensis. Acta Crystallographica Section D: Structural Biology, 74(4), 305–314.
Han, H., Ling, Z., Khan, A., Virk, A. K., Kulshrestha, S., & Li, X. (2019). Improvements of thermophilic enzymes: From genetic modifications to applications. Bioresource Technology, 279, 350–361.
Hendlich, M., Lackner, P., Weitckus, S., Floeckner, H., Froschauer, R., Gottsbacher, K., Casari, G., & Sippl, M. J. (1990). Identification of native protein folds amongst a large number of incorrect models: the calculation of low energy conformations from potentials of mean force. Journal of Molecular Biology, 216(1), 167–180.
Hii, S. L., Tan, J. S., Ling, T. C., & Ariff, A. Bin. (2012). Pullulanase: role in starch hydrolysis and potential industrial applications. Enzyme Research, 2012, 1-14.
Hondoh, H., Kuriki, T., & Matsuura, Y. (2003). Three-dimensional structure and substrate binding of Bacillus stearothermophilus neopullulanase. Journal of Molecular Biology, 326(1), 177–188.
Imanaka, T., & Kuriki, T. (1989). Pattern of action of Bacillus stearothermophilus neopullulanase on pullulan. Journal of Bacteriology, 171(1), 369–374.
Jafari, F., Kiani-Ghaleh, F., Eftekhari, S., Razlighi, M. R., Nazari, N. Hajirajabi, M. Sarvestani, F. M., & Sharafieh, G. (2022) Cloning, overexpression, and structural characterization of a novel archaeal thermostable neopullulanase from Desulfurococcus mucosus DSM 2162. Prep. Biochem. Biotechnol. 1-12
Janecek, S., Svensson, B., & Henrissat, B. (1997). Domain evolution in the α-amylase family. Journal of Molecular Evolution, 45(3), 322–331.
Janeček, Š., Svensson, B., & MacGregor, E. (2014). α-Amylase: an enzyme specificity found in various families of glycoside hydrolases. Cellular and Molecular Life Sciences, 71(7), 1149–1170.
Källberg, M., Wang, H., Wang, S., Peng, J., Wang, Z., Lu, H., & Xu, J. (2012). Template-based protein structure modeling using the RaptorX web server. Nature Protocols, 7(8), 1511–1522.
Kamasaka, H., Sugimoto, K., Takata, H., Nishimura, T., & Kuriki, T. (2002). Bacillus stearothermophilus neopullulanase selective hydrolysis of amylose to maltose in the presence of amylopectin. Applied and Environmental Microbiology, 68(4), 1658–1664.
Kelley, L. A., Mezulis, S., Yates, C. M., Wass, M. N., & Sternberg, M. J. E. (2015). The Phyre2 web portal for protein modeling, prediction and analysis. Nature Protocols, 10(6), 845–858.
Krieger, E., Joo, K., Lee, J., Lee, J., Raman, S., Thompson, J., Tyka, M., Baker, D., & Karplus, K. (2009). Improving physical realism, stereochemistry, and side-chain accuracy in homology modeling: Four approaches that performed well in CASP8. Proteins: Structure, Function, and Bioinformatics, 77(S9), 114–122.
Kumar, Sandeep, Tsai, C.-J., & Nussinov, R. (2000). Factors enhancing protein thermostability. Protein Engineering, 13(3), 179–191.
Kumar, Sumit, Dangi, A. K., Shukla, P., Baishya, D., & Khare, S. K. (2019). Thermozymes: adaptive strategies and tools for their biotechnological applications. Bioresource Technology, 278, 372–382.
Kuriki, T., & Imanaka, T. (1999). The concept of the α-amylase family: structural similarity and common catalytic mechanism. Journal of Bioscience and Bioengineering, 87(5), 557–565.
Kuriki, T., Okada, S., & Imanaka, T. (1988). New type of pullulanase from Bacillus stearothermophilus and molecular cloning and expression of the gene in Bacillus subtilis. Journal of Bacteriology, 170(4), 1554–1559.
Kuriki, T., Tsuda, M., & Imanaka, T. (1992). Continuous production of panose by immobilized neopullulanase. Journal of Fermentation and Bioengineering, 73(3), 198–202.
Laskowski, R. A., MacArthur, M. W., & Thornton, J. M. (2006). PROCHECK: validation of protein-structure coordinates.
Madigan, M. T., Martinko, J. M., & Parker, J.,(2006). Brock biology of microorganisms (Vol. 11). Pearson Prentice Hall Upper Saddle River, NJ.
Niehaus, F., Peters, A., Groudieva, T., & Antranikian, G. (2000). Cloning, expression and biochemical characterisation of a unique thermostable pullulan-hydrolysing enzyme from the hyperthermophilic archaeon Thermococcus aggregans. FEMS Microbiology Letters, 190(2), 223–229.
Nisha, M., & Satyanarayana, T. (2013). Characterization of recombinant amylopullulanase (gt-apu) and truncated amylopullulanase (gt-apuT) of the extreme thermophile Geobacillus thermoleovorans NP33 and their action in starch saccharification. Applied Microbiology and Biotechnology, 97(14), 6279–6292.
Nisha, M., & Satyanarayana, T. (2016). Characteristics, protein engineering and applications of microbial thermostable pullulanases and pullulan hydrolases. Applied Microbiology and Biotechnology, 100(13), 5661–5679.
Rebehmed, J., Alphand, V., De Berardinis, V., & de Brevern, A. G. (2013). Evolution study of the Baeyer–Villiger monooxygenases enzyme family: Functional importance of the highly conserved residues. Biochimie, 95(7), 1394–1402.
Reddy, N. S., Nimmagadda, A., & Rao, K. R. S. S. (2003). An overview of the microbial $α$-amylase family. African Journal of Biotechnology, 2(12), 645–648.
Roy, A., Messaoud, E. Ben, & Bejar, S. (2003). Isolation and purification of an acidic pullulanase type II from newly isolated Bacillus sp. US149. Enzyme and Microbial Technology, 33(5), 720–724.
Russell, R. J. M., Ferguson, J. M. C., Hough, D. W., Danson, M. J., & Taylor, G. L. (1997). The crystal structure of citrate synthase from the hyperthermophilic archaeon Pyrococcus furiosus at 1.9 Åresolution. Biochemistry, 36(33), 9983–9994.
Schäfers, C., Blank, S., Wiebusch, S., Elleuche, S., & Antranikian, G. (2017). Complete genome sequence of Thermus brockianus GE-1 reveals key enzymes of xylan/xylose metabolism. Standards in Genomic Sciences, 12(1), 1–9.
Sharma, S. Vaid, S. Bhat, B. Singh, S., & Bajaj, B. K. (2019)Thermostable enzymes for industrial biotechnology, in: advances in enzyme technology, Elsevier, pp. 469–495.
Sievers, F., Wilm, A., Dineen, D., Gibson, T. J., Karplus, K., Li, W., Lopez, R., McWilliam, H., Remmert, M., Söding, J., Thompson, J. D., & Higgins. D. G. (2011). Fast, scalable generation of high-quality protein multiple sequence alignments using Clustal Omega. Molecular Systems Biology, 7(1), 539.
Svensson, B. (1994). Protein engineering in the α-amylase family: catalytic mechanism, substrate specificity, and stability. Plant Molecular Biology, 25(2), 141–157.
Williams, R. A. D., Smith, K. E., Welch, S. G., Micallef, J., & Sharp, R. J. (1995). DNA relatedness of Thermus strains, description of Thermus brockianus sp. nov., and proposal to reestablish Thermus thermophilus (Oshima and Imahori). International Journal of Systematic and Evolutionary Microbiology, 45(3), 495–499.
Xu, J., Ren, F., Huang, C.-H., Zheng, Y., Zhen, J., Sun, H., Ko, T.-P., He, M., Chen, C.-C., Chan, H.-C., Guo, R. T., Song, H., & Ma, Y. (2014). Functional and structural studies of pullulanase from Anoxybacillus sp. LM18-11. Proteins: Structure, Function, and Bioinformatics, 82(9), 1685–1693.
Zhang, Y. (2008). I-TASSER server for protein 3D structure prediction. BMC Bioinformatics, 9(1), 1–8.
How to cite this article
Abubakar, H., Ndatsu, Y., Musa, A. D., Mayaki, F. G., Baba, S. A., Balogu, V. T. and Ogbiko, C. (2023). Three-dimensional Structure and functional studies of neopullulanase from Thermus brockianus. Chemical and Environmental Science Archives, Vol. 3(2), 24-28.
https://doi.org/10.47587/CESA.2023.3201
Licence Article Metadata
This work is licensed under a Creative Commons Attribution 4.0 International License.